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Abstract—Network Exchange Objects (NEO) is a new 
software framework designed to facilitate development of 
complex natural or built distributed system models, where the 
system model is represented as a graph, through which 
currencies (e.g., coding information) flux. This paper 
introduces “system-level hypothesis (SLH) testing” as a form 
of computational thinking that will drive integration of 
computational and empirical sciences to promote efficient, 
self-correcting inquiry into the operations and behavior of 
complex systems. To demonstrate NEO, we examine the 
problem of maximizing the productivity of a software 
development organization by measuring growth in the total 
lines of code (LOC) contributed by developers. We develop a 
software framework (NEO) that allows rapid creation of 
model variants representing alternative SLHs.  NEO is 
designed to investigate systems we describe as “complex 
adaptive hierarchical networks” (CAHNs – complex systems 
represented as networks that route and store multiple 
interactive currencies). Models built atop NEO, are organized 
collections of individual values (model variables) and 
algorithms (model logic). Modelers systematically combine 
algorithms to create alternative model formulations at 
runtime. Thus, NEO is a simulation framework that can be 
used in any domain of expertise, where systems are 
represented as interdependent entities that store and flux 
multiple currencies. 

Keywords- modeling framework; experimentation; software 
evolution, tools 

I.  INTRODUCTION 

Recent research has described drivers of complexity that 
span natural, built, and social systems. Network theory 
explains how subtle changes in patterns of connection 
among system components influence system behavior [11], 
including the distribution, flow, and transformation of 
“currencies,” such as energy, matter, information, capital, 

or genes. Complex systems theory explains how processes 
such as emergence and self-organization can result from the 
interaction of system components [12]. Hierarchy theory 
describes how system components observable at different 
levels of organization are linked and can influence one 
another across spatiotemporal scales [1]. And principles 
from disciplines as divergent as ecological economics and 
ecological stoichiometry reveal how the storage, flux, and 
transformation of energy, matter, information, capital, and 
other currencies are fundamental yet interdependent 
measures of system behavior [13]. Thus, these four system 
characteristics grounded in natural systems – patterns of 
connection, interactions among components, hierarchical 
organization, and the interdependency of system currencies 
– represent primary drivers of many complex adaptive 
systems sensu [7]. 
 

Based on these concepts, we introduce “complex 
adaptive hierarchical networks” (CAHNs) as an operational 
framework for studying and understanding system-level 
complexity. CAHNs are similar to the spatially-explicit 
dynamic patch hierarchies of Wu and Loucks [15], except 
that patches (or in the case of a CAHN, networked “cells”) 
can represent any physical component of a system. To 
visualize a CAHN, we start by representing a system as a 
collection of cells that are observable at a particular 
hierarchical level and linked by “edges” to form a network. 
Each cell in a CAHN represents a system component and 
each edge represents the potential for interaction between 
two cells. Cells and edges are holons 1  in a hierarchy, 

                                                           
1 A “holon” represents a discernable component of a system observed at a 

particular hierarchical level.  Holons are nested hierarchically, any 
holon can be subdivided into additional holons at the next lower 
hierarchical level. 



meaning cells and edges observable at any hierarchical 
level can be decomposed into finer-scale cells and edges at 
the next lower hierarchical levels. Cells can store and 
Edges can transport or transform multiple currencies. 
Although, Cells and Edges in a CAHN generally 
store/flux/transform the same suite of currencies they may 
do so using a variety of rule sets, creating functionally 
heterogeneous fluxes across the system. Holons (Cells and 
Edges) have characteristics, which can be static or 
dynamic. Dynamic characteristics change according to 
rules that may consider: 1) the current characteristics of the 
holon; 2) the characteristics of surrounding holons; and/or 
3) the relative abundance of and/or interdependencies 
among currencies.  Additionally, various processes may 
create or destroy cells or edges, representing the evolution 
of network topology within the system. 
 

We present an object oriented software framework, 
NEO; which enables rapid construction of computer models 
that simulate CAHN behavior. The design and 
implementation of NEO compartmentalizes model 
complexity, and facilitates rapid development, simplified 
management, and rigorous comparison of alternative model 
formulations. In combination with empirical methods, NEO 
allows scientists and engineers to investigate: 1) patterns of 
connection, 2) interactions among system components, 3) 
hierarchical organization, and 4) the interdependency of 
system currencies as simultaneous drivers of complex 
system behavior. NEO establishes an underlying 
mechanistic process necessary to execute repeatable 
experiments, reject refutable hypotheses and enable 
complex software management decisions. To illustrate 
NEO, we compare growth patterns of source code when 
subjected to differences in organizational topologies. NEO 
allowed the rapid development of alternate SLHs to predict 
code growth. We find that the model results are consistent 
with an expected empirical relation system for how source 
code grows. 

II. THE NEO FRAMEWORK 

The NEO framework facilitates development of CAHN 
simulation models and facilitates manipulation of 
complexity in the interactions of currencies, allowing 
analyses of alternative SLH’s about the behavior of a given 
CAHN. NEO is, simultaneously, a means of building 
models of complex systems, and a means of testing and 
refining System Level Hypotheses (SLHs). As such, NEO 

represents a fundamental departure from existing modeling 
environments (e.g., Stella, Matlab, Swarm, Repast, Netlogo, 
etc.). Specifically, NEO allows a modeler to: 1) 
compartmentalize complexity in models by writing, 
debugging, and managing individual algorithms that 
represent the dynamics controlling a single characteristic of 
a complex system; 2) organize these algorithms into 
hierarchal groups that describe the “behavior” of individual 
components (i.e., how individual system components store, 
flux, or transform system currencies); 3) combine and 
recombine these behaviors to create different “types” 
(classes) of system components that can flux, store, or 
transform multiple interactive currencies; 4) describe the 

arrangement and connections among typed cells and links to 
represent the structure of a complex system of interest; 5) 
create model variants (competing SLHs) by strategically 
adding, removing, replacing, or refining algorithms, 
behaviors, currencies, or cells/edges in the model; and 6) 
maintain, manage, and execute model variants to test 
competing SLHs. NEO is based on a fundamental 
abstraction of a simulation model which views a model as 
simply organized collections of Values and Algorithms. 
Values can be either static (akin to model parameters) or 
dynamic (akin to state variables) during the course of model 
execution. Each dynamic Value has an associated Algorithm 
used to update the Value during model execution. Under this 
paradigm, a NEO model is run by executing each of the 
Algorithms once during every model iteration. To determine 
the order of Algorithm execution, NEO sorts the Algorithms 
based on their interdependencies. 

III. MODELLING SCENARIOS 

In an extensive and systematic review of studies related to 
estimation of software development effort, Jorgensen [10] 
finds no substantial evidence in favor of model estimation 
techniques over expert estimation. Further, Jorgensen finds 
situations that suggest the importance of calibrating 
estimation models to specific organizations. To illustrate 
NEO we present five example scenarios that illustrate SLH 
testing by contrasting the productivity levels of an 
organization (measured by counting the total LOC 
produced) based on the topology of the organization. NEO 
is specifically designed to allow fine-grained calibration of 
models by facilitating how domain knowledge is imparted.  
 

In section 3A we describe the equations that govern the 
simulation of source code growth on a development branch. 
We describe how individual and groups of programmers, as 
well as the topology of an organization can be 
conceptualized as a NEO network and how LOC can be 
thought of as a currency moving through the network. In 
section 3B we describe variations made to the topology of 
an organization and to the experience levels of individual 
programmers. In section 3.C we analyze the observed 
growth curves. 

A. Simulating Development of a Code Base 

In a coding flow model a single programmer (Figure 1a), 
a group of programmers (Figure 1b), and a development 
branch are represented as Cells (Nodes). The edge 
connecting the cells represents the flow of information 
between developer(s) and the development branch. In this 
case, information is made up of lines of code. The pink 
boxes represent static parameter Values that the model uses. 
The black (diamond) boxes represent Algorithms that 
calculate the value of the dependent variables (in the pink 
boxes) during each time step (iteration) of the model. We 
posit that change in size of the code base to which one or 
more programmers contributes can be modeled by assuming 
that each programmer has a maximum potential rate at 
which LOC are generated. Thus, the “currency” of the 
model (i.e., what flows and/or is accumulated within the 
model) is LOC.  



 
Figure 1a. Simple coding flow growth model to predict LOC contributed 

by a single programmer. 

 

 
Figure 2b. Simple coding flow growth model to predict LOC contributed 

by a group of programmers. 
 

As the code base increases in size, potential LOC 
produced by each programmer will not be realized, but 
instead, will be reduced by some efficiency factor (coding 
penalty) because coding becomes more complicated as the 
size of the code base increases: ܧ஼೟௜ ൌ ௧ି∆௧ܥܱܮ௠௔௫௜/ሺܥ∆ ൅ 1ሻଶ                    (S1) ܧ஼೟ ൌ ௧ି∆௧ܥܱܮ௠௔௫/ሺܥ∆ ൅ 1ሻଶ                     (G1) 

where EC is an efficiency reduction  associated with the 
increasing complexity [14] of the code base, t is the current 
model time step, ΔCmax is the maximum potential lines of 
code generated by a programmer, LOC is the lines of code 
in the code base, and Δt is the model time step. Further, as 
more programmers are added to a project, we posit that each 
programmer will have to spend more time communicating 
with fellow programmers and therefore will spend less time 
generating code. ܧ௅௜ ൌ ݁ିఈ೔∙௅೔                                   (S2) ܧ௅ ൌ ݁ିఈ∙ሺ௡ିଵሻ                                (G2) 

EL is an efficiency reduction due to time spent 
communicating with other programmers, α is a constant, Li 

is the number of communication links associated with a 
single programmer i, and n is the number of programmers 
contributing to the code base. An additional efficiency 
reduction is expressed in equation S5 for individual 
programmers: 

ேܧ  ൌ ݁ିఉ∙ு                                    (S5) 

  
EN represents the penalty associated with the network 
topology, where β is a constant and H is the maximum 
number of hops required for a given programmer i to 
communicate with programmer j in a given topology. 
Thus, the lines of code generated will be the sum of the 
potential lines of code for each programmer, multiplied by 
the efficiency factors from the prior equations:  

 
௧௜ܥ∆  ൌ ݐ∆ ∙ ௠௔௫௜ܥ∆ ∙ ௅௜ܧ ∙ ஼೟௜ܧ ∙ ௧ܥ∆ ே             (S3)ܧ ൌ ݐ∆ ∙ ௠௔௫ܥ∆ ∙ ௅ܧ ∙  ஼೟                   (G3)ܧ

 
Finally, LOC accumulate within the development branch:  

௧௢௧௧ܥ  ൌ ௧௢௧௧ି∆௧ܥ ൅ ∑ ௧௜௡௜ୀଵܥ∆                 (S4) 
௧௢௧௧ܥ  ൌ ௧௢௧௧ି∆௧ܥ ൅ ݊ ∙  ௧                  (G4)ܥ∆

 
where Ctot is the total number of LOC in the code base. 
 

This simulation model provides a simple example that 
describes how the total lines of code contributed by a 
developer or a group of developers grow. In the 
degenerative case of a single developer, when the state 
variable Li (S2) is set to 0, no efficiency penalty can be 
incurred and the value of ELi (= 1) remains constant 
throughout the simulation. This is similar to a programmer 
group of size n = 1. 

In the programmer group example (Figure 1b), the 
model is constrained by assumptions that apply equally to a 
clique of programmers. Thus, there exists a high penalty for 
the number of communication links, but a low penalty for 
the number of hops required to reach another programmer 
(i.e., H=1). In order to relax these assumptions, NEO 
facilitates the calibration of models by allowing each 
programmer (agent) to have distinct parameter values and 
therefore increase estimation accuracy. Domain experts 
now have the ability to adjust individual parameters. 
Values chosen for the constants α (eqs S2 and G2), which 
affects the communication links efficiency, and β (eq. S5), 
which affects the number of hops necessary to reach a 
programmer are 0.1 and 0.3 respectively. Figures 2a and 2b 
depict the efficiency loss as the number of communication 
links and hops increase. 

B. Variations of Organizational Topology 

Variations in organizational topology are significant 
when modeling productivity. Clearly, management’s goals 
are to maximize effort by making educated decisions when 
assigning responsibilities to individual programmers. For 
example, studies by Cain and McCrindle [5] show that 
organizational structure (or lack of) can be reflected in the 
code base, and that the number of programmers in a team is 
not necessarily a good indicator of an organization’s 
productivity. The first observation was based on Conway’s 
Law [6]: “the structure of the system mirrors the structure 
of the organization that designed it,” and the second 
observation is based on Brook’s Law [4]: “adding more 



programmers to a late project makes it later.” The 
scenarios shown in Figure 3 where chosen to illustrate the 
changing topologies of an organization. 

 
The dark circles represent experienced programmers 

with a development potential (ΔCmax) of 500 LOC per 
week, and the light circles represent novice programmers 
with a development potential of 250 LOC per week. 
Diagrams A and B implement the programmer group model 
depicted in Figure 1b which is constrained by assumptions 
that apply equally to all programmers in the group. Thus, 
you cannot differentiate between individual programmers. 
Models C through E relax these assumptions. The models 
depicted in C and D represent typical hierarchical 
groupings that represent two development teams. In C, we 
create a communication link between the two experienced 
programmers, whereas in D, the same communications link 
is delegated to novice programmers. 

 
 

 
Figure 2a. Efficiency loss due to communication. 

 

 
Figure 2b. Efficiency loss due to number of hops required to reach a 

programmer. 

 
 
 

 
 

 
 

 
Figure 3. Group and individual developer topologies. 

 
We observe that the maximum number of hops between 

two developers in these models is given by H=3. Unlike the 
group models depicted in A and B (graph cliques), 
developers are unconstrained by global assumptions. In this 
model this is exemplified by the varying number of 
communication links (Li) that each programmer has. 
Finally, the model depicted in E is meant to illustrate a poor 
organizational structure. In this case H=5. 

C. Scenario Results 

We ran the simulation over a period of 520 weeks. 
Results are depicted in Figure 4. 

 



 
Figure 4. Growth simulation over 520 weeks. 

 
Whilst these models are sophomoric, they clearly show 

the flexibility of NEO. In models A and B, we observe that 
while a group of programmers produces more code than a 
single programmer, the larger group is clearly constrained 
by the number of communication links that are introduced. 
Models C and D were created to contrast what happens to 
the productivity of a team when their experienced 
programmers are the main foci of contact versus how the 
productivity is affected when novice programmers are put 
in charge of the communication. The group that delegated 
communications to the novice programmers (D) is more 
productive. Unsurprisingly, the least productive group was 
E. 

IV. NEO MODEL ORGANIZATION 

Although the associations among Holons(Cells and 
Edges), Behaviors, Algorithms, and Values may appear 
complicated, implementing models is straightforward 
(Figure 5A). A NEO model is comprised of a source code 
hierarchy containing a collection of Currency Packages, 
each of which contains all of the Behaviors that pertain to a 
single currency. Behaviors are classified according to Cell 
or Edge, and each Behavior contains a collection of 
Algorithms implemented as Java classes. Each Algorithm 
has an initialize() and calculate() method (Figure 5B), 
which are called by NEO during model initialization and 
execution. The initialize method requests references to 
Values in the simulation and returns an initial magnitude of 
the Value. The calculate method returns the magnitude of 
the Value after each model iteration, as calculated by code 
performing a function of other values in the model. Thus, 
creating an Algorithm involves extending a Java object 
called Dynam and implementing the abstract initialize() and 
calculate() methods in the subclass named for its associated 
Value. A collection of implemented Dynams within the 
code hierarchy determines a currency Behavior sub-
package, or the total set of rules for how a currency 
behaves in a given cell or edge Holon. Hierarchically, a 
complete set of cell and edge Behaviors define the potential 
actions or interactions available for a given currency 
Package. This approach allows a diverse set of potential 

Algorithms for a given currency in a CAHN to be divided 
among relatively simple constituent bits of code.  Thus, 
complexity of a given CAHN model arises from the 
complexity of the network structure (see Developing NEO 
Models section), not complexity in the algorithms 
controlling the changes in each model Value. It also 
provides a formidable tool for creating, falsifying, and 
refining alternate SLHs, as described next. 

 

 
Figure 5. Hierarchy of code growth model. A) Levels of the code 

hierarchy are labeled by black boxes. B) Example code for implementing 
key algorithms. Such code is simple, but can be sophisticated and 

arbitrarily complex in NEO models. 

 
     SLHs can be created, maintained, and tested by 
managing model code at three levels of the coding 
hierarchy. First, alternate Algorithms can be inserted into 
the code hierarchy to incrementally alter existing 
Behaviors. For instance, the potential lines of code 
produced by a programmer (ΔCmax) are often modeled with 
governing equations [14]. In the NEO model, ΔCmax can be 
converted from a static parameter Value to a dynamic state 
variable simply by adding an Algorithm that calculates 
ΔCmax = f(workDays, sickDays, yearsOfExperience). This 
would alter the Behavior to include new dependencies on 
the variables workdays, sickDays, and yearsOfExperience, 
but would require recompiling the package. To avoid the 
need to recompile code, the Algorithm for ΔCmax can also 
be added to a subfolder of the Behavior to create a Deviant 
(Figure 5A). Under this scenario, the user can specify either 
the original Behavior or the Deviant. An unlimited number 
of Deviants can exist for any Behavior, and 
Behaviors/Deviants are specified for Holons at run time, 
without recompiling. Thus, Deviants allow the user to 
maintain and execute code that represents alternate SLHs 
by easily altering/adding/removing model complexity at the 
granularity of individual algorithms. Second, alternate 
Behaviors can be inserted into the code hierarchy. Both 
model topology and Holon types are defined at run time 
and can be refined without recompiling code. A NEO input 
table – the “Holon type table” – allows users to create 
different Cell and Edge types by recombining Behaviors. 
Resulting Holon types are referenced in another input table 



– the “matrix table” – which describes the desired network 
topology for a particular simulation and assigns a Holon 
type (and therefore, associated Behaviors) to each cell and 
edge in a network. Thus, Alternate Behaviors and Holon 
types provide mechanisms that allow the user to maintain 
and execute code that represents alternate SLHs by easily 
altering/adding/removing model complexity at the 
granularity of individual behaviors and individual holons. 
Third, Currency Packages (“c” in Figure 5A) can be 
enabled and disabled at run time to add or remove a 
currency from a model.  By enabling a currency within a 
model, the currency Package installs additional Values and 
Algorithms within Holons, potentially converting some 
existing model parameters (static Values) into state 
variables (dynamic Values). 

V. CONCLUSIONS 

The goal of this research is to produce a robust modeling 
framework that delegates expertise to domain experts. 
Clearly, product and process technology, organizational 
information, and human factors do not remain constant and 
without the ability to control parameters at finely tuned 
granular levels, estimation errors increase as models fail to 
keep up. Rather than to try to anticipate trends in different 
domain areas [2], [3], we instead focus on providing 
parsimonious model execution that guarantees consistency 
and allows for sensitivity analysis among competing 
hypotheses. Using this research philosophy, the goal for 
simulation modeling is not to generate parameter sets that 
allow results from a single model structure to “fit the data,” 
but rather, to contrast conditions under which alternative 
SLHs (formalized as models) succeed vs. fail to reproduce 
empirical observations about system behaviors. In doing so, 
researchers gain critical information to postulate which 
system dynamics might be missing from, superfluous to, 
inadequate for, or incorrect within competing SLHs. 
Subsequently, researchers can use reductionist experiments 
or reanalyze existing data to test or refine component rules 
of the SLH, create one or more alternative SLHs that 
incorporate the refined rule set(s) into a simulation model, 
and test the new SLH against observations. Such an 
approach integrates and leverages simulation science to 
drive discovery and generate, test, and reject SLHs most 
quickly. In the end, as competing SLHs are rejected and 
successful SLHs are refined over time, associated models 
become more reliable representations of the modeled 
system and can begin to be applied more conventionally to 

forecast the behavior of the studied system under 
conditions that have not or cannot be observed directly. We 
presented models that are simple yet clearly convey the 
principles behind NEO model building and execution. 
Significantly more complex models in other domains [8] 
are available. 
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