
Development and Application of a Simulation
Environment (NEO) for Integrating Empirical and

Computational Investigations of System-Level
Complexity

Clemente Izurieta1, Geoffrey Poole2, Robert A. Payn2, Isaac Griffith1, Ryan Nix1, Ashley Helton3, Emily Bernhardt3,

Amy J. Burgin4

1 Department of Computer Science, Montana State University
2 Department of Land Resources and Environmental Sciences, Montana State University

3 Department of Biology, Duke University
4 School of Natural Resources, University of Nebraska-Lincoln

{clemente.izurieta, gpoole, rpayn}@montana.edu, {isaac.griffith, ryan.nix}@msu.montana.edu, {amh72, ebernhar}@duke.edu,
aburgin2@unl.edu

Abstract—Network Exchange Objects (NEO) is a new
software framework designed to facilitate development of
complex natural or built distributed system models, where the
system model is represented as a graph, through which
currencies (e.g., coding information) flux. This paper
introduces “system-level hypothesis (SLH) testing” as a form
of computational thinking that will drive integration of
computational and empirical sciences to promote efficient,
self-correcting inquiry into the operations and behavior of
complex systems. To demonstrate NEO, we examine the
problem of maximizing the productivity of a software
development organization by measuring growth in the total
lines of code (LOC) contributed by developers. We develop a
software framework (NEO) that allows rapid creation of
model variants representing alternative SLHs. NEO is
designed to investigate systems we describe as “complex
adaptive hierarchical networks” (CAHNs – complex systems
represented as networks that route and store multiple
interactive currencies). Models built atop NEO, are organized
collections of individual values (model variables) and
algorithms (model logic). Modelers systematically combine
algorithms to create alternative model formulations at
runtime. Thus, NEO is a simulation framework that can be
used in any domain of expertise, where systems are
represented as interdependent entities that store and flux
multiple currencies.

Keywords- modeling framework; experimentation; software
evolution, tools

I. INTRODUCTION

Recent research has described drivers of complexity that
span natural, built, and social systems. Network theory
explains how subtle changes in patterns of connection
among system components influence system behavior [11],
including the distribution, flow, and transformation of
“currencies,” such as energy, matter, information, capital,

or genes. Complex systems theory explains how processes
such as emergence and self-organization can result from the
interaction of system components [12]. Hierarchy theory
describes how system components observable at different
levels of organization are linked and can influence one
another across spatiotemporal scales [1]. And principles
from disciplines as divergent as ecological economics and
ecological stoichiometry reveal how the storage, flux, and
transformation of energy, matter, information, capital, and
other currencies are fundamental yet interdependent
measures of system behavior [13]. Thus, these four system
characteristics grounded in natural systems – patterns of
connection, interactions among components, hierarchical
organization, and the interdependency of system currencies
– represent primary drivers of many complex adaptive
systems sensu [7].

Based on these concepts, we introduce “complex
adaptive hierarchical networks” (CAHNs) as an operational
framework for studying and understanding system-level
complexity. CAHNs are similar to the spatially-explicit
dynamic patch hierarchies of Wu and Loucks [15], except
that patches (or in the case of a CAHN, networked “cells”)
can represent any physical component of a system. To
visualize a CAHN, we start by representing a system as a
collection of cells that are observable at a particular
hierarchical level and linked by “edges” to form a network.
Each cell in a CAHN represents a system component and
each edge represents the potential for interaction between
two cells. Cells and edges are holons 1 in a hierarchy,

1 A “holon” represents a discernable component of a system observed at a

particular hierarchical level. Holons are nested hierarchically, any
holon can be subdivided into additional holons at the next lower
hierarchical level.

meaning cells and edges observable at any hierarchical
level can be decomposed into finer-scale cells and edges at
the next lower hierarchical levels. Cells can store and
Edges can transport or transform multiple currencies.
Although, Cells and Edges in a CAHN generally
store/flux/transform the same suite of currencies they may
do so using a variety of rule sets, creating functionally
heterogeneous fluxes across the system. Holons (Cells and
Edges) have characteristics, which can be static or
dynamic. Dynamic characteristics change according to
rules that may consider: 1) the current characteristics of the
holon; 2) the characteristics of surrounding holons; and/or
3) the relative abundance of and/or interdependencies
among currencies. Additionally, various processes may
create or destroy cells or edges, representing the evolution
of network topology within the system.

We present an object oriented software framework,
NEO; which enables rapid construction of computer models
that simulate CAHN behavior. The design and
implementation of NEO compartmentalizes model
complexity, and facilitates rapid development, simplified
management, and rigorous comparison of alternative model
formulations. In combination with empirical methods, NEO
allows scientists and engineers to investigate: 1) patterns of
connection, 2) interactions among system components, 3)
hierarchical organization, and 4) the interdependency of
system currencies as simultaneous drivers of complex
system behavior. NEO establishes an underlying
mechanistic process necessary to execute repeatable
experiments, reject refutable hypotheses and enable
complex software management decisions. To illustrate
NEO, we compare growth patterns of source code when
subjected to differences in organizational topologies. NEO
allowed the rapid development of alternate SLHs to predict
code growth. We find that the model results are consistent
with an expected empirical relation system for how source
code grows.

II. THE NEO FRAMEWORK

The NEO framework facilitates development of CAHN
simulation models and facilitates manipulation of
complexity in the interactions of currencies, allowing
analyses of alternative SLH’s about the behavior of a given
CAHN. NEO is, simultaneously, a means of building
models of complex systems, and a means of testing and
refining System Level Hypotheses (SLHs). As such, NEO

represents a fundamental departure from existing modeling
environments (e.g., Stella, Matlab, Swarm, Repast, Netlogo,
etc.). Specifically, NEO allows a modeler to: 1)
compartmentalize complexity in models by writing,
debugging, and managing individual algorithms that
represent the dynamics controlling a single characteristic of
a complex system; 2) organize these algorithms into
hierarchal groups that describe the “behavior” of individual
components (i.e., how individual system components store,
flux, or transform system currencies); 3) combine and
recombine these behaviors to create different “types”
(classes) of system components that can flux, store, or
transform multiple interactive currencies; 4) describe the

arrangement and connections among typed cells and links to
represent the structure of a complex system of interest; 5)
create model variants (competing SLHs) by strategically
adding, removing, replacing, or refining algorithms,
behaviors, currencies, or cells/edges in the model; and 6)
maintain, manage, and execute model variants to test
competing SLHs. NEO is based on a fundamental
abstraction of a simulation model which views a model as
simply organized collections of Values and Algorithms.
Values can be either static (akin to model parameters) or
dynamic (akin to state variables) during the course of model
execution. Each dynamic Value has an associated Algorithm
used to update the Value during model execution. Under this
paradigm, a NEO model is run by executing each of the
Algorithms once during every model iteration. To determine
the order of Algorithm execution, NEO sorts the Algorithms
based on their interdependencies.

III. MODELLING SCENARIOS

In an extensive and systematic review of studies related to
estimation of software development effort, Jorgensen [10]
finds no substantial evidence in favor of model estimation
techniques over expert estimation. Further, Jorgensen finds
situations that suggest the importance of calibrating
estimation models to specific organizations. To illustrate
NEO we present five example scenarios that illustrate SLH
testing by contrasting the productivity levels of an
organization (measured by counting the total LOC
produced) based on the topology of the organization. NEO
is specifically designed to allow fine-grained calibration of
models by facilitating how domain knowledge is imparted.

In section 3A we describe the equations that govern the
simulation of source code growth on a development branch.
We describe how individual and groups of programmers, as
well as the topology of an organization can be
conceptualized as a NEO network and how LOC can be
thought of as a currency moving through the network. In
section 3B we describe variations made to the topology of
an organization and to the experience levels of individual
programmers. In section 3.C we analyze the observed
growth curves.

A. Simulating Development of a Code Base

In a coding flow model a single programmer (Figure 1a),
a group of programmers (Figure 1b), and a development
branch are represented as Cells (Nodes). The edge
connecting the cells represents the flow of information
between developer(s) and the development branch. In this
case, information is made up of lines of code. The pink
boxes represent static parameter Values that the model uses.
The black (diamond) boxes represent Algorithms that
calculate the value of the dependent variables (in the pink
boxes) during each time step (iteration) of the model. We
posit that change in size of the code base to which one or
more programmers contributes can be modeled by assuming
that each programmer has a maximum potential rate at
which LOC are generated. Thus, the “currency” of the
model (i.e., what flows and/or is accumulated within the
model) is LOC.

Figure 1a. Simple coding flow growth model to predict LOC contributed

by a single programmer.

Figure 2b. Simple coding flow growth model to predict LOC contributed

by a group of programmers.

As the code base increases in size, potential LOC
produced by each programmer will not be realized, but
instead, will be reduced by some efficiency factor (coding
penalty) because coding becomes more complicated as the
size of the code base increases: ܧ஼೟௜ ൌ ௧ି∆௧ܥܱܮ௠௔௫௜/ሺܥ∆ ൅ 1ሻଶ (S1) ܧ஼೟ ൌ ௧ି∆௧ܥܱܮ௠௔௫/ሺܥ∆ ൅ 1ሻଶ (G1)

where EC is an efficiency reduction associated with the
increasing complexity [14] of the code base, t is the current
model time step, ΔCmax is the maximum potential lines of
code generated by a programmer, LOC is the lines of code
in the code base, and Δt is the model time step. Further, as
more programmers are added to a project, we posit that each
programmer will have to spend more time communicating
with fellow programmers and therefore will spend less time
generating code. ܧ௅௜ ൌ ݁ିఈ೔∙௅೔ (S2) ܧ௅ ൌ ݁ିఈ∙ሺ௡ିଵሻ (G2)

EL is an efficiency reduction due to time spent
communicating with other programmers, α is a constant, Li

is the number of communication links associated with a
single programmer i, and n is the number of programmers
contributing to the code base. An additional efficiency
reduction is expressed in equation S5 for individual
programmers:

ேܧ ൌ ݁ିఉ∙ு (S5)

EN represents the penalty associated with the network
topology, where β is a constant and H is the maximum
number of hops required for a given programmer i to
communicate with programmer j in a given topology.
Thus, the lines of code generated will be the sum of the
potential lines of code for each programmer, multiplied by
the efficiency factors from the prior equations:

௧௜ܥ∆ ൌ ݐ∆ ∙ ௠௔௫௜ܥ∆ ∙ ௅௜ܧ ∙ ஼೟௜ܧ ∙ ௧ܥ∆ ே (S3)ܧ ൌ ݐ∆ ∙ ௠௔௫ܥ∆ ∙ ௅ܧ ∙ ஼೟ (G3)ܧ

Finally, LOC accumulate within the development branch:

௧௢௧௧ܥ ൌ ௧௢௧௧ି∆௧ܥ ൅ ∑ ௧௜௡௜ୀଵܥ∆ (S4)
௧௢௧௧ܥ ൌ ௧௢௧௧ି∆௧ܥ ൅ ݊ ∙ ௧ (G4)ܥ∆

where Ctot is the total number of LOC in the code base.

This simulation model provides a simple example that
describes how the total lines of code contributed by a
developer or a group of developers grow. In the
degenerative case of a single developer, when the state
variable Li (S2) is set to 0, no efficiency penalty can be
incurred and the value of ELi (= 1) remains constant
throughout the simulation. This is similar to a programmer
group of size n = 1.

In the programmer group example (Figure 1b), the
model is constrained by assumptions that apply equally to a
clique of programmers. Thus, there exists a high penalty for
the number of communication links, but a low penalty for
the number of hops required to reach another programmer
(i.e., H=1). In order to relax these assumptions, NEO
facilitates the calibration of models by allowing each
programmer (agent) to have distinct parameter values and
therefore increase estimation accuracy. Domain experts
now have the ability to adjust individual parameters.
Values chosen for the constants α (eqs S2 and G2), which
affects the communication links efficiency, and β (eq. S5),
which affects the number of hops necessary to reach a
programmer are 0.1 and 0.3 respectively. Figures 2a and 2b
depict the efficiency loss as the number of communication
links and hops increase.

B. Variations of Organizational Topology

Variations in organizational topology are significant
when modeling productivity. Clearly, management’s goals
are to maximize effort by making educated decisions when
assigning responsibilities to individual programmers. For
example, studies by Cain and McCrindle [5] show that
organizational structure (or lack of) can be reflected in the
code base, and that the number of programmers in a team is
not necessarily a good indicator of an organization’s
productivity. The first observation was based on Conway’s
Law [6]: “the structure of the system mirrors the structure
of the organization that designed it,” and the second
observation is based on Brook’s Law [4]: “adding more

programmers to a late project makes it later.” The
scenarios shown in Figure 3 where chosen to illustrate the
changing topologies of an organization.

The dark circles represent experienced programmers

with a development potential (ΔCmax) of 500 LOC per
week, and the light circles represent novice programmers
with a development potential of 250 LOC per week.
Diagrams A and B implement the programmer group model
depicted in Figure 1b which is constrained by assumptions
that apply equally to all programmers in the group. Thus,
you cannot differentiate between individual programmers.
Models C through E relax these assumptions. The models
depicted in C and D represent typical hierarchical
groupings that represent two development teams. In C, we
create a communication link between the two experienced
programmers, whereas in D, the same communications link
is delegated to novice programmers.

Figure 2a. Efficiency loss due to communication.

Figure 2b. Efficiency loss due to number of hops required to reach a

programmer.

Figure 3. Group and individual developer topologies.

We observe that the maximum number of hops between

two developers in these models is given by H=3. Unlike the
group models depicted in A and B (graph cliques),
developers are unconstrained by global assumptions. In this
model this is exemplified by the varying number of
communication links (Li) that each programmer has.
Finally, the model depicted in E is meant to illustrate a poor
organizational structure. In this case H=5.

C. Scenario Results

We ran the simulation over a period of 520 weeks.
Results are depicted in Figure 4.

Figure 4. Growth simulation over 520 weeks.

Whilst these models are sophomoric, they clearly show

the flexibility of NEO. In models A and B, we observe that
while a group of programmers produces more code than a
single programmer, the larger group is clearly constrained
by the number of communication links that are introduced.
Models C and D were created to contrast what happens to
the productivity of a team when their experienced
programmers are the main foci of contact versus how the
productivity is affected when novice programmers are put
in charge of the communication. The group that delegated
communications to the novice programmers (D) is more
productive. Unsurprisingly, the least productive group was
E.

IV. NEO MODEL ORGANIZATION

Although the associations among Holons(Cells and
Edges), Behaviors, Algorithms, and Values may appear
complicated, implementing models is straightforward
(Figure 5A). A NEO model is comprised of a source code
hierarchy containing a collection of Currency Packages,
each of which contains all of the Behaviors that pertain to a
single currency. Behaviors are classified according to Cell
or Edge, and each Behavior contains a collection of
Algorithms implemented as Java classes. Each Algorithm
has an initialize() and calculate() method (Figure 5B),
which are called by NEO during model initialization and
execution. The initialize method requests references to
Values in the simulation and returns an initial magnitude of
the Value. The calculate method returns the magnitude of
the Value after each model iteration, as calculated by code
performing a function of other values in the model. Thus,
creating an Algorithm involves extending a Java object
called Dynam and implementing the abstract initialize() and
calculate() methods in the subclass named for its associated
Value. A collection of implemented Dynams within the
code hierarchy determines a currency Behavior sub-
package, or the total set of rules for how a currency
behaves in a given cell or edge Holon. Hierarchically, a
complete set of cell and edge Behaviors define the potential
actions or interactions available for a given currency
Package. This approach allows a diverse set of potential

Algorithms for a given currency in a CAHN to be divided
among relatively simple constituent bits of code. Thus,
complexity of a given CAHN model arises from the
complexity of the network structure (see Developing NEO
Models section), not complexity in the algorithms
controlling the changes in each model Value. It also
provides a formidable tool for creating, falsifying, and
refining alternate SLHs, as described next.

Figure 5. Hierarchy of code growth model. A) Levels of the code

hierarchy are labeled by black boxes. B) Example code for implementing
key algorithms. Such code is simple, but can be sophisticated and

arbitrarily complex in NEO models.

 SLHs can be created, maintained, and tested by
managing model code at three levels of the coding
hierarchy. First, alternate Algorithms can be inserted into
the code hierarchy to incrementally alter existing
Behaviors. For instance, the potential lines of code
produced by a programmer (ΔCmax) are often modeled with
governing equations [14]. In the NEO model, ΔCmax can be
converted from a static parameter Value to a dynamic state
variable simply by adding an Algorithm that calculates
ΔCmax = f(workDays, sickDays, yearsOfExperience). This
would alter the Behavior to include new dependencies on
the variables workdays, sickDays, and yearsOfExperience,
but would require recompiling the package. To avoid the
need to recompile code, the Algorithm for ΔCmax can also
be added to a subfolder of the Behavior to create a Deviant
(Figure 5A). Under this scenario, the user can specify either
the original Behavior or the Deviant. An unlimited number
of Deviants can exist for any Behavior, and
Behaviors/Deviants are specified for Holons at run time,
without recompiling. Thus, Deviants allow the user to
maintain and execute code that represents alternate SLHs
by easily altering/adding/removing model complexity at the
granularity of individual algorithms. Second, alternate
Behaviors can be inserted into the code hierarchy. Both
model topology and Holon types are defined at run time
and can be refined without recompiling code. A NEO input
table – the “Holon type table” – allows users to create
different Cell and Edge types by recombining Behaviors.
Resulting Holon types are referenced in another input table

– the “matrix table” – which describes the desired network
topology for a particular simulation and assigns a Holon
type (and therefore, associated Behaviors) to each cell and
edge in a network. Thus, Alternate Behaviors and Holon
types provide mechanisms that allow the user to maintain
and execute code that represents alternate SLHs by easily
altering/adding/removing model complexity at the
granularity of individual behaviors and individual holons.
Third, Currency Packages (“c” in Figure 5A) can be
enabled and disabled at run time to add or remove a
currency from a model. By enabling a currency within a
model, the currency Package installs additional Values and
Algorithms within Holons, potentially converting some
existing model parameters (static Values) into state
variables (dynamic Values).

V. CONCLUSIONS

The goal of this research is to produce a robust modeling
framework that delegates expertise to domain experts.
Clearly, product and process technology, organizational
information, and human factors do not remain constant and
without the ability to control parameters at finely tuned
granular levels, estimation errors increase as models fail to
keep up. Rather than to try to anticipate trends in different
domain areas [2], [3], we instead focus on providing
parsimonious model execution that guarantees consistency
and allows for sensitivity analysis among competing
hypotheses. Using this research philosophy, the goal for
simulation modeling is not to generate parameter sets that
allow results from a single model structure to “fit the data,”
but rather, to contrast conditions under which alternative
SLHs (formalized as models) succeed vs. fail to reproduce
empirical observations about system behaviors. In doing so,
researchers gain critical information to postulate which
system dynamics might be missing from, superfluous to,
inadequate for, or incorrect within competing SLHs.
Subsequently, researchers can use reductionist experiments
or reanalyze existing data to test or refine component rules
of the SLH, create one or more alternative SLHs that
incorporate the refined rule set(s) into a simulation model,
and test the new SLH against observations. Such an
approach integrates and leverages simulation science to
drive discovery and generate, test, and reject SLHs most
quickly. In the end, as competing SLHs are rejected and
successful SLHs are refined over time, associated models
become more reliable representations of the modeled
system and can begin to be applied more conventionally to

forecast the behavior of the studied system under
conditions that have not or cannot be observed directly. We
presented models that are simple yet clearly convey the
principles behind NEO model building and execution.
Significantly more complex models in other domains [8]
are available.

ACKNOWLEDGMENT

This research is made possible by the National Science
Foundation (NSF) under grant awards 1021001 and EAR-
0120523.

REFERENCES
[1] Allen, T.F.H. and T.B. Starr, Hierarchy: Perspectives for Ecological

Complexity. 1982, Chicago: University of Chicago Press.

[2] Boehm, B., Software Engineering Economics. Englewood Cliffs, NJ:
Prentice Hall, 1981.

[3] Boehm, B., Horowitz, E., Abts, A., Future Trends Implications in
Software Cost Estimation Models. CrossTalk April 2000, p. 4-8.

[4] Brooks, F.P., The Mythical Man-Month, Addison Wesley Longman,
Reading, Mass., 1975.

[5] Cain, W.C., McCrindle, R.J., An Investigation into the Effects of
Code Coupling on Team Dynamics and Productivity. Proceedings of
the 26th IEEE International Computer Software and Applications
Conference. 2002.

[6] Conway, M., How Do Committees Invent? Datamation,Vol.14, No.
4, Apr. 1968.

[7] Cowan, G.A., D. Pines, and D. Meltzer, eds. Complexity: Metaphors,
Models, and Reality. 1994, Perseus Books: Reading, MA. 741.

[8] Helton, A.M., et al. Thinking outside the channel: Modeling nitrogen
cycling in networked river ecosystems. Frontiers in Ecology and the
Environment.

[9] Jones, C., Software Cost Estimation in 2002. 2002. The Journal of
Defense Software Engineering, p. 4-8.

[10] Jorgensen, M., A review of studies on expert estimation of software
development effort. 2004. The Journal of Systems and Software 70:
p. 37-60

[11] Proulx, S.R., D.E.L. Promislow, and P.C. Phillips. 2005. Network
thinking in ecology and evolution. Trends in Ecology & Evolution.
20(6): p. 345-353.

[12] Solé, R.V. and J. Bascompte, Self organization in complex
ecosystems. 2006, Princeton, NJ: Princeton University Press. 392.

[13] Sterner, R.W., J.J. Elser, and P. Vitousek, Ecological Stoichiometry:
The Biology of Elements from Molecules to the Biosphere. 2002,
Princeton, NJ: Princeton University Press. 584.

[14] Turski, W.M., Reference Model for Smooth Growth of Software
System. IEEE Transactions on Software Engineering, 22(8), August
1996.

[15] Wu, J. and O.L. Loucks. 1995. From balance of nature to
hierarchical patch dynamics: a paradigm shift in ecology. The
Quarterly Review of Biology. 70(4): p. 439-466.

