
An Industry Perspective to Comparing the SQALE
and Quamoco Software Quality Models
Isaac Griffith, Clemente Izurieta
Software Engineering Laboratory

Montana State University
Bozeman, MT, USA

isaac.griffith@msu.montana.edu
clemente.izurieta@montana.edu

Chris Huvaere
TechLink Center

Software Engineering and Analysis Laboratory
Bozeman, MT, USA

chuvaere@techlinkcenter.org

Abstract—Context: We investigate the different perceptions of
quality provided by leading operational quality models when
used to evaluate software systems from an industry perspective.
Goal: To compare and evaluate the quality assessments of
two competing quality models and to develop an extensible
solution to meet the quality assurance measurement needs of an
industry stakeholder –The Construction Engineering Research
Laboratory (CERL). Method: In cooperation with our industry
partner TechLink, we operationalize the Quamoco quality model
and employ a multiple case study design comparing the results
of Quamoco and SQALE, two implementations of well known
quality models. The study is conducted across current versions
of several open source software projects sampled from GitHub
and commercial software for sustainment management systems
implemented in the C# language from our industry partner.
Each project represents a separate embedded unit of study
in a given context –open source or commercial. We employ
inter-rater agreement and correlation analysis to compare the
results of both models, focusing on Maintainability, Reliability,
and Security assessments. Results: Our observations suggest
that there is a significant disconnect between the assessments
of quality under both quality models. Conclusion: In order to
support industry adoption, additional work is required to bring
competing implementations of quality models into alignment.
This exploratory case study helps us shed light into this problem.

Index Terms—quality assurance; quality standards; software
quality

I. INTRODUCTION

A theoretical quality model comprises a set of characteris-
tics and sub characteristics that provide a platform on which
quality assessments about software components can be made.
By definition, theoretical quality models lack the ability to
provide assessments of quality, thus their operationalization
is necessary. The operationalization of these models is a
critical step in providing pragmatic solutions that can be
readily adopted by software development organizations in
industry. Further, the deployment of operationalized quality
models allow for continuous monitoring of the quality of
an organization’s software components; thus facilitating rapid
intervention when violations are encountered.

In this multiple case study we operationalized the Quamoco
[1] quality model in cooperation with our industry partner
TechLink [2]. Further, we used our implementation to compare

it with an existing and popular quality mode, SQALE [3],
[4]. We have chosen to compare two implementations of ISO
based quality models that focus not only on specific quality
attributes, but also aggregate quality (from many dimensions;
otherwise known as the ilities of software quality) to higher
levels of abstraction. The connection to higher levels of
abstraction help organization decision makers assess potential
economic impacts of breakdowns in quality in a holistic man-
ner. By focusing on the comparison between quality models
with these characteristics, we facilitate an understanding of
quality issues that affect decision makers as well as developers.

A. Industry Partners

We have two industry partners: i) TechLink, is a federally-
funded technology transfer (T2) center that was established
in Bozeman, Montana in FY 1996. In FY 1999, TechLink
became the first DoD-wide Partnership Intermediary (per 15
USC 3715), with the mission to assist all branches of DoD
with technology transfer, and ii) CERL [5] is the Construction
Engineering Research Laboratory under the US Army Corps
of Engineers, and the customer of this technology.

B. Research Objective

Our goal with this case study is to shed light into the in-
consistencies with which quality is assessed. This is important
because (pursuant with our research hypothesis) the perception
of quality can differ significantly even when the underlying
quality models are ISO based, and this helps generate confu-
sion when industry practitioners such as CERL evaluate the
quality of their software. We attribute these inconsistencies to
the specific operationalizations of these theoretical models. To
achieve this goal required the independent operationalization
of a competing quality model –Quamoco (c.f. III-A).

C. Contributions

Our study provides the following four contributions: i) the
operationalization of the Quamoco quality model as a plug-
in to the SonarQubeTM framework [6], which allows for easy
comparison to the built-in SQALE method using the same rule
sets (comprised of code smells, vulnerabilities, and bugs); ii) a
comparison between two quality models and their respective

quality characteristics; which provides a much needed step
towards the calibration of quality assessment reporting; iii)
a comparison between open source and commercial grade
software quality, and iv) an integrated visual dashboard that
allows our industry stackeholder (i.e., CERL) and practitioners
the ability to switch between quality models with a single
click.

II. BACKGROUND AND RELATED WORK

Quality models provide references that software components
can be measured against. Theoretical models such as ISO
specifications [7] [8] go only as far as offering guidelines along
many dimensions of quality which must be operationalized to
provide a working solution that can be used by the engineering
community. A common criticism of theoretical models is
that they are too ambiguous to be directly measurable. A
comprehensive description of quality models is beyond the
scope of this paper, however Wagner [9] and Ferenc et al. [10]
provide a significant account and history of quality models.
We selected two operationalizations of ISO theoretical models:
SQALE and Quamoco.

In the last decade, the research community has also observed
how technical debt has become a popular approach to track
the progress of source code development by pointing out
disharmonies (i.e. code smells) that need refactoring [11]–
[13]. Their remediation can either be undertaken immediately,
or scheduled for a later date at the expense of incurring debt
(i.e. principal and interest) [14]–[17]. Tools are available that
provide calculations of this index; however their reliability
and the validity of their measurement methods remains an
open and active research area. Technical debt should not be
confused with software quality, as the former is a metric that
only characterizes the maintainability of a system. The new
definition of technical debt (16K definition) explicitly states
that “technical debt is a contingent liability whose impact is
limited to internal system qualities, primarily maintainability
and evolvability.” [18]. Although the focus of the definition
is on only one aspect of the many dimensions that make up
ISO based quality models, it is important to mention that
the SQALE method to managing technical debt associates
remediation costs that affect the technical debt index of a
system by using a remediation function that takes into account
all dimensions of quality, not just maintainability [19]. The
SonarQubeTM operationalization of SQALE deviates in its
calculation of technical debt by only focusing on the technical
debt ratio associated with maintainability. For a more compre-
hensive comparison between technical debt calculations and
quality assessment approaches see Griffith et al. [20].

A. SQALE

The SQALE (Software Quality Assessment based on Life-
cycle Expectations) quality model is a generic approach to
modeling software quality and can be applied to any language.
It is based on the ISO/IEC 9126-1:2001 standard [7] (further
referred to as ISO 9K). The approach is based on eight code
characteristics that are organized chronologically in pyramidal

form. At the bottom of the pyramid is testability, followed
above by reliability, changeability, efficiency, security, main-
tainability, portability and at the top of the pyramid, reusability.
Quality requirements such as “Exception Handling shall not
catch Null Pointer Exception,” are associated with character-
istics in the pyramid and have a remediation cost. If more that
one characteristic is affected by a quality requirement then
an association with the lowest characteristic is formed. The
characteristics at the bottom of the pyramid represent more
important dimensions of quality and are meant to aid prac-
titioners when prioritizing requirements that need refactoring
in the code base. SQALE is published under the open source
licence and it is implemented by many vendors. This case
study uses the implementation of SonarQube’s plug-in as it
has become widely adopted by organizations.

B. Quamoco

The Quamoco quality model was developed explicitly as
an extensible meta model. Its goal was to bridge a gap
between abstract concepts and measurable attributes. The
central concept of the model is a factor, meant to represent an
attribute or property of an entity; where the latter represents an
important aspect of quality we want to measure. Two types of
factors exist, quality aspects and product factors. The former
represents the more abstract qualities found in theoretical
models such as the ISO standards. The latter represents the
measurable parts of a software component and have an impact
on their associated quality aspect. Factors form hierarchies;
where factors can further refine some aspect of quality. To
improve modularization, the meta model is split into modules;
where the root module contains general quality hierarchies and
basic product factors. This allows practitioners to extend the
root module for specific purposes or technologies, and to focus
on the qualities relevant to their specific needs.

Quamoco’s base model is an instantiation of the meta model
and uses the ISO/IEC 25010:2011 [8] (further referred to as
ISO 25K) as a reference. It is the result of many years of
collaboration by quality experts from industry and academia,
and it is comprised of a comprehensive set of factors and
measures that capture software quality assessment.

C. High Level Differences between Quality Models

Quamoco and SQALE are both hierarchical models. They
link issues found in software to quality aspects and sub-
aspects. Both models use this information as a means to
evaluate the quality of a software component. The more
prominent differences between these models are:

i. Quamoco is defined using a meta-model which character-
izes quality models defined for different circumstances.
SQALE is limited to the model imposed.

ii. SQALE is limited to the aggregation of effort estimates
through remediation functions. Quamoco is designed to
incorporate weighted aggregation, ranking, and a variety
of functions to describe the influence between aspects of
the quality model.

iii. Quamoco models are defined in separate files and are
hierarchical (in the sense that one model can inherit from
another). The SQALE model is proprietary and built into
the system.

iv. Quamoco models are defined such that an evaluation
of the current level of quality can be provided with-
out coaxing issues or rule violations into a unit-based
measure. SQALE utilizes remediation effort as an index
of quality, but its proprietary nature utilizes predefined
values for each issue without the ability to easily tune or
parameterize those values.

v. SQALE is based on ISO 9K, and Quamoco is based on
ISO 25K.

III. STUDY DESIGN

Careful consideration was given to the design of this study
and we followed Yin’s decompositions of case studies [21].
Although this study focuses on many subunits of study, their
respective commercial and open source contexts go beyond a
single holistic design. We gather data on each of the embedded
units of analysis; however our larger exploratory analysis is the
comparison between different quality models, and our focus is
on understanding their differences and similarities among the
various dimensions of quality.

The SQALE model is integrated with the SonarQubeTM

platform; however Quamoco required that we develop a plug-
in to the SonarQubeTM framework. By having both quality
models integrated under a single platform, we reduce threats
to the validity of the work, as the same environment needs to
be configured for both models to be operational.

A. Quamoco Plug-In Architecture

Prior to comparing the assessments of both quality models,
in cooperation with TechLink, we developed an extensible
architecture to meet the functional needs of our industry
stackeholder –CERL. The architecture that defines how our
implementation of the Quamoco plugin1 interacts with the
SonarQubeTM ecosystem is depicted in Fig. 1. The blue
elements of the architecture represent the Quamoco plugin
components embedded in SonarQubeTM, and the small yel-
low circles depict the order in which these components are
executed. Critical components of this architecture include
the following: i) the SonarQubeTM Sonar Scanner Quamoco
Sensor that executes the corresponding language parser to
produce a code tree for a given source file and ii) the
SonarQubeTM Compute Engine; which executes the Quamoco
Measure Computer.

The sensors are executed during the analysis phase by one
of the many SonarQubeTM scanner tools. In Step 1, the Sonar
Scanner executes the SonarQubeTMC# analysis Sonar Plugin.
This plugin identifies the source artifacts, collects issues from
tools (such as Roslyn2) and calculates basic metrics at the file
level and above. In Step 2 of the analysis phase, the Quamoco
plugin executes, as follows: for each file identified in Step

1http://www.sparqline.com.
2https://github.com/dotnet/roslyn

Sonar
Db

C#
Sonar
Plugin

Store Issues

Quamoco
Measure
ComputerRetrieve

Measures and Issues

Reads

Quamoco
Quality Model

Editor

 Creates

Sonar Scanner

SonarQubeTM Dashboard

Quality
Model
Specs

Retrieves Measures From Database

Key

Dashboad Widget

File

Database

Data Processor

Data Flow

Store
Measures

MySQLTM DBMS SonarQubeTM Compute Engine

C#
Source
Code
Files

Quamoco
Sensor

Stores
Issues

And
Code Tree

1

2

3

44 ...

Fig. 1: Architecture diagram depicting the interaction of the
Quamoco plugin and the SonarQubeTM framework.

1, a code tree is generated and metrics for each node in the
tree (excluding leaf nodes; which represent statements) are
measured. Specifically the following metrics are measured:
Number of Statements (NOS) [22], Source Lines of Code
(SLOC) [22], Number of Fields (NOF) [23]–[25], Number of
Methods (NOM) [26], and Number of Classes (NC) [27] for
applicable levels. The values for these are then aggregated up
the code tree and stored in each of the nodes. Once all files
have been processed. The code tree is split into separate trees
(corresponding to each file), converted to JSON and stored as
a measure associated with the file in the analysis report for
distribution to the server. This process is depicted in Fig. 2.

Once the analysis report has been received by the server the
SonarQubeTMCompute Engine phase is executed, as depicted
in Step 3 of Fig. 1. In this phase, artifacts are evaluated
in a bottom-up fashion along the tree corresponding to the
structure of the entire project. Starting with files, each file’s
code tree is extracted and merged to form the entire code tree
used to evaluate quality. Issues identified by other plugins are
also extracted. The code tree is used to identify the affected
locations for potential issues (identifying methods, classes, or
files) and this data is encoded into a Finding. At the module
level code trees are joined into a sub-project node.

At the highest level of the tree (i.e., the root project level),
the actual processing occurs. Any remaining modules are
merged into the final code tree with the project at the root.
Once this is complete, all metrics are aggregated to the top
of the tree. At this point the system is ready to evaluate the
quality of the project.

In order to evaluate the quality of a project, four activities

need to occur. First, the Quamoco quality model is opened and
a processing graph is constructed. Second, the collected Find-
ings are attached to the appropriate measures in the Quamoco
processing graph. Third, quality is evaluated in a top-down
recursive fashion (from the root “Quality” node down to
each measure). Finally, the values of each quality attribute
of concern are extracted and published in the SonarQubeTM

database. Each of these is further described in the following
sub-subsections.

1) Processing Graph: The processing graph is a distillation
of the combined quality models for a complete Quamoco
instantiation for a given language. This graph is simply a
directed acyclic graph composed of four types of nodes, as
depicted in Fig. 3. Factor Nodes representing the higher level
abstractions related to quality characteristics and subcharacter-
istics. Measure Nodes correspond to lower level issues related
to the source code and which are applicable to entities found
within source code (e.g., types, methods or fields). Finding
and Value Nodes correspond to static analysis tool rules or
metric values, respectively.

Each Factor Node has an attached evaluator which handles
the evaluation of afferent (incoming) measures through finding
the mean of the normalized value of the findings set or value
set, or through a weighted sum of afferent factors. Measure
nodes each have an attached aggregator operation applicable
to the type of aggregation necessary: Union or Intersection

for finding sets (propagated from attached finding nodes or
other finding based measures) or Mean, Min, or Max for
Value Nodes. Finding and Value Nodes provide the ability to
collect either Findings (for named issues) or Values (for named
metrics). Edges between Factor Nodes provide the necessary
afferent weights (i.e., coefficients of source Factor Nodes)
prior to summing the values at the destination Factor Node.
Edges between Factor and Measure Nodes which convey sets
of findings provide a means to normalize the finding set using
an associated Normalization Measure and Range, along with a
linearly increasing or decreasing function which constrains the
value between 0.0 and 1.0, while also providing information
on the expected effect that this measure has on the factor.

2) Collection of Findings: SonarQubeTM utilizes both ex-
ternal and internal static analysis tools to provide a set of rules
for a given language. Whenever these tools report a violation
of one of these rules, SonarQubeTM creates an Issue linked
to the rule and the location within the File where the Issue
occurred. Since SonarQube’s smallest representable unit of
a software system is the “File,” and Quamoco requires that
the representation occur at the finer-grained level of Types
and Methods, this poses a problem. In order to solve this
issue, our plugin also utilizes an ANTLR 3 parser to extract a
representation of the system at this finer-grained level, and we
call this representation a Code Tree. The Code Tree contains

3http://www.antlr.org

CI Server

Step 1: SQ
C# Sensor

C#
Source
Code
Files

Issues

Measures

Step 2: Quamoco Sensor

C#
Source
Code
Files

SonarQube Server

... Sonar
Db

SonarQube Dashboard
Step 3: Quamoco
Measure Computer

+

Executes

Issue
Sets

Partial Code
Trees

Complete Code Tree Quality
Model

Distiller

Analysis
Report

Complete Code Tree
Partial Code

Trees Metrics Analysis

Parser and Code Tree BuilderC# Static Analysis

C# Basic Metrics

P
rocess ing G

ra phQuamoco
Evaluation

Key

Dashboad Widget

File

Database

External Program

Data Flow

Dashboard Widgets

Finding
Sets

SonarQube Scanner

Item Sets

Data Processor

Fig. 2: Detailed architecture and flow process.

Quality

Factor Nodes

Measure Nodes

Finding and Value
Nodes

…

… …

……

……

Factor-Factor
Edges

Factor-Factor
Edges

Measure-Factor
Edges

Value/Finding
Edges

Fig. 3: Representation of the processing graph.

nodes from the Project-level down to the Statement-Level each
of which are capable of containing metric information as well.
Using this representation of the system the Quamoco plugin
extracts the component where an issue is found (for each issue
associated with each file) and constructs a Finding for that
issue. The constructed finding contains the location (Method,
Type, or File) where the issue was created and the name of
the rule that was violated. Each created finding is then added
to the Finding Node representing that rule in the Quamoco
processing graph.

3) Evaluation of Quality: The Quamoco model evaluates
the quality of a system by aggregating the measures and issues
affecting the system. In a Quamoco model these form the
lowest level of the hierarchy and provide input at the measure
level of the model. Each measure can refine another measure
or can be used in the evaluation of a factor. A factor can either
be a combination of measures or a combination of factors, but
not both. The value of a factor is always a value in the range
[0.0, 1.0] and represents the presence of that factor within the
software system. Measures which deal with issues simply pass
sets of issues up to the next level of the hierarchy. Once the
issue set reaches a factor they must be normalized.

An issue is normalized by summing the normalization
measure (such as SLOC) across the entities (i.e., a method,
class, or file) where the issue occurs and dividing this value
by the total value of the metric across the system. This
normalization then produces a value in the range [0.0, 1.0].
A factor which is evaluated by a set of other factors uses
a weighted sum to determine its value. The weighted sum
is defined by a rank assigned to each factor taking part in
the evaluation, where higher ranks indicate lower importance.
Weights are then assigned reflecting this ranking in order to
ensure that the value produced is within the range noted above.

Controlling evaluation of the model uses a simple recursive
depth-first search based algorithm. Starting at the sink Factor,
“Quality”, the algorithm requests the values for each incoming
edge. This in turn requests the values of the source side node
for each incoming factor, continuing down the factor hierarchy

Fig. 4: Screenshot of the Quamoco Bullet Graph.

in the same manner. At the point when a measure to factor
edge is reached it either requests the set of findings from the
source or the set of values from the source (depending on
the type of measure the source side is). This process stops
once either a Finding Node or Value Node is reached. At this
point set propagation or weight application along the edges
and value aggregation or evaluation at the nodes occurs back
up the graph (following the direction of the edges). It should
be noted that once a value is calculated any subsequent calls
on that node immediately return that value (thus reducing the
number of full traversals of the graph).

4) Publishing Quality Information: Saving the quality val-
ues for a project is a simple matter. This occurs at the point
when the project (top level component in the SonarQubeTM

system) is reached during the Compute Engine phase. Here
the evaluation of the model is commenced. Once the value
of the sink “Quality” factor has been determined, it and its
immediate children’s (representing the ISO 25K illities) values
are collected and stored as measures on the Project component.

B. Dashboard Technology

The final step in generating quality ratings, is to extract the
measured quality attributes from the SonarQubeTM database
and display the information using the dashboard technology
as depicted in Fig. 4. In addition to the default SonarQubeTM

widgets, we have implemented a Quamoco bullet graph for
displaying quality information. A bullet graph is the combi-
nation of a gradient scale, and a multi-level bar chart.

In Fig. 4, the background of each dimension of quality (i.e.,
a bar) is a gray gradient (with darker shades representing poor
quality) that changes as the quality grade increases. Through
the middle of each bar is a dark blue bar indicating the
current level for a given quality attribute. Associated with
each attribute is a scale between 0.0 and 1.0, indicating the
normalized level of quality, and a marker depicted as a solid
vertical black mark that represents the minimum threshold

TABLE I: Study projects and their basic properties. Note that
with the exception of the systems in italics, all others are open
source.

Project Version KLOC
DotNetOpenAuth 5.0.0 108.887
ElasticLINQ 1.4.1 4.682
EulerSharp 1.0 0.345
FireSharp 2.0.3 1.533
FluentCommandLineParser 1.2 1.890
GitVersion 4.0.0 7.779
LibuvSharp 1.0 7.973
MailChimp.NET 1.0 7.062
MongoRepository 1.6.11 1.503
NAnt 0.92 41.116
Prism 6.1.0 8.11
PythonNet 2.2.2 10.036
QRCoder 1.0 2.348
RemoveEmptyDirectories 2.2 1.740
SharpDox 1.2.1 8.535
SharpSSH 1.1.1.13 17.189
SMS Fueler 1.0 39.791
SMS Outcome 1.0 6.907
SpotifyAPI.NET 2.13.1 4.129
SurgarRestSharp 1.0.0 3.322

necessary to obtain an A rating in the corresponding quality
dimension. Currently this threshold is set at 0.98 (see Section
III-D for a description of mapping Quamoco grade ratings)
for all dimensions of quality. On the rightmost margin of the
dashboard you can see the grade (in letter form A-F) that
represents the rating of each quality dimension measured by
Quamoco.

The ratings for the SQALE quality dimensions are provided
by dashboard technology that is built in with the SonarQubeTM

tool. Since we use the open source version of the SonarQubeTM

tool, we only have access to a limited subset of quality
attributes (c.f. III-D).

C. Case Studies and Context

We analyze the quality of CERL and open source software
systems. CERL projects are from the unclassified Defense
Logistics Agency (DLA) suite of Sustainment Management
System (SMS) applications known as SMS Outcome and SMS
Fueler, both of which are written in C#. The open source
projects are a random selection of GitHub4 C# projects. The
names of each project and their corresponding sizes (in KLOC)
are provided in Table I.

D. Approach

This study utilizes automated build and analysis tools to
collect relevant data. The build tools selected were Jenkins
CI5 (for open source projects) and Microsoft Team Foundation
Server (TFS)6 (for CERL/commercial projects), as they pro-
vide the ability to automate the extraction of source code from
associated repositories and to automate the build and analysis
steps. The analysis was conducted using SonarQubeTM 5.6.5

4https://github.com
5https://jenkins.io
6https://www.visualstudio.com/tfs/

TFS Jenkins CI

Init

SQ Init

Build

SQ
AnalyzeSonarQube

Instance 1
SonarQube
Instance 2

Analyze Results

…
Comercial Projects

…
Open-Source Projects

Fig. 5: The analysis process for both CERL and open source
systems analyzed in this study.

coupled with the provided C# plugin, and our own quality
analysis plugins. This process is depicted in Fig. 5.

The analysis of the results of the two quality models is
slightly more complicated than the simplified data collection
process. Specifically, due to the limitations of the open source
version of SonarQubeTM we were restricted to comparing
quality characteristics common between the SonarQubeTM im-
plementation of SQALE and our implementation of Quamoco.
The common quality characteristics available were the follow-
ing: Maintainability, Reliability, and Security. Both SQALE
and Quamoco derive an ordinal assessment of quality for
each dimension measured. Our implementation of Quamoco
uses the presence of a factor within the system to calculate a
normalized value bounded in the range [0.0, 1.0].

Although the ISO 9K standard (operationalized by SQALE)
does not include Security as a characteristic, SonarQubeTM

does provide a rating for Security. The SQALE model calcu-
lates the Reliability of a system by counting the number of
bugs, where 0 bugs yields an A, at least 1 minor bug yields a
B, at least 1 major bug yields a C, at least 1 critical bug yields
a D, and at least 1 blocker bug yields an E. The Security rating
of a system is calculated in a similar manner as the Reliability
aspect, but instead of bugs, they count vulnerabilities. The
Maintainability of a system is calculated as a function of the
technical debt ratio; where the technical debt ratio is equal to
the remediation cost divided by the development cost.

The Quamoco quality ratings are a more straight forward
conversion from the value representations. As described in
Section III-A3, values of Quamoco factors fall in the range
[0.0, 1.0] and represent the presence of that factor within the
software system. Given this, Quamoco quality ratings simply
become a function of mapping a quality factor’s value into
a grade. The current implementation uses the default grading
scheme defined by Wagner [9] as follows, where x is a factor’s
value: A: x ≥ 0.98, B: x ≥ 0.96, C: x ≥ 0.94, D: x ≥ 0.92,

E: x ≥ 0.90 and F: x < 0.90.
Although both models arrive at their respective ordinal

assessments of quality using different techniques, their re-
spective calculations are based on empirical data that are
meant to capture significant experiences from a large corpus
of systems; thus the expectation from an industry perspective
(i.e., practitioners and quality assurance engineers) is that
similar ratings of quality should exist.

Having identified a common set of quality characteristics
and a common notion of quality via the grade-based ratings,
we can now compare default perceptions of quality according
to both quality models. The ordinal grade metric can be
directly compared using a non-parametric approach. One small
issue is that SQALE ratings range from A-E and Quamoco
ratings range from A-F. To handle this issue we categorize an
E in SQALE in the same category as an E and F in Quamoco.

E. Statistical Analysis Procedures

The research objective is to identify inconsistencies in the
interpretation of software quality via operationalization of a
standard into a quality model. This objective then becomes
the problem of comparing two quality models across relevant
quality characteristics using the ordinal grade ratings, as iden-
tified in the previous section. To help illuminate this problem
we have selected the following statistics: Bangdiwala’s B [28],
Cohen’s κ [29] and Goodman-Kruskal’s gamma [30].

Bangdiwala’s B is a lesser known measure of inter-rater
agreement and typically used to visually depict agreement.
It measures the proportion of agreement in the range [0.0,
1.0], where 0.0 indicates no agreement, and 1.0 indicates
complete agreement. Bangdiwala’s B assumes that the data
can be formulated as a frequency table (so at least nominal).
Furthermore, this measure produces two values, the first is
an unweighted version measuring the proportion of exact
agreement between raters, while a weighted version measures
the proportion of partial agreement between raters. For each
quality characteristic we evaluate both the weighted and un-
weighted values of the B statistic in order to gain a good sense
of the underlying data.

Cohen’s κ is a well known non-parametric measure of
inter-rater agreement and assumes that the underlying data is
nominal, thus allowing the data to be analyzed without any
transformation. The values of κ fall in the range [0.0, 1.0],
where 0.0 indicates no agreement and 1.0 indicates complete
agreement. For each quality characteristic we evaluate the κ
statistic and calculate its 95% confidence interval. Unlike the
B statistic, the κ statistic takes into account the fact that
agreement may occur by chance, making it a more robust
measure of inter-rater agreement.

In addition to the inter-rater agreement measures we have
also selected the Goodman-Kruskal γ measure of ranked
correlation. We have selected this measure as it is a non-
parametric measure of associativity. The base assumption of
the Goodman-Kruskal measure is that the variables in question
are measured at the ordinal level, an assumption which our
data meets. Furthermore, this measure does not penalize values

TABLE II: Results of quality analysis across each of the
selected projects. Pairs marked in bold indicate agreement
between quality models. Note: columns with Q are Quamoco
resuls and S are SQALE results.

Reliability Security Maintainability
Project Q S Q S Q S
DotNetOpenAuth D E A D F A
ElasticLINQ A D A A B A
EulerSharp A A A D A A
FireSharp A C A A A A
FluentCommandLineParserA D A A B A
GitVersion A E A D C A
LibuvSharp A E A D F A
MailChimp.NET A A A A B A
MongoRepository A A A A C A
NAnt A E A D F A
Prism A D A A D A
PythonNet A E A D E A
QRCoder A E A D C A
RemoveEmptyDirectoriesA D A A C A
SharpDox C E A D A A
SharpSSH D E A D F B
SMS Fueler A E A A F A
SMS Outcome A D A A C A
SpotifyAPI.NET A D A C C A
SurgarRestSharp A E A A C A

due to ties, such as in Kendall’s tau-b [31] (a more commonly
used non-parametric measure of correlation), as we expect that
ties will be common for both Quamoco and SQALE. Like
all measures of correlation, the Goodman-Kruskal γ measure
produces a value in the range [-1.0, 1.0], here a value of -1.0
represents complete disagreement or reciprocal association, a
value of 0.0 represents ambivalence or no association, and
a value of 1.0 represents complete agreement or association.
Thus, it serves as a secondary measure for validation. For each
quality characteristic we evaluate the γ statistic and calculate
its 95% confidence interval.

IV. RESULTS AND ANALYSIS

This section presents the results and discusses their analysis.
The first set of results pertain to the quality ratings by both
Quamoco and SQALE quality models for the selected quality
characteristics (see Table II). Initial non-parametric results of
running the Wilcoxon [32] test for paired dependent samples
yielded significant results (p < 0.01) for each of the three
quality characteristics. These results were not unexpected and
easily validated through simple visual inspection of the data.
Our analysis thus turned to inter-rater agreement investiga-
tions. The second set of results (see Tables III and IV) are from
the inter-rater statistical analyses conducted on the collected
quality assessments.

The first set of results include the quality ratings across
the 20 open source and commercial projects under study (as
identified in Table I). Note that the results are an ordinal grade
rating in the range of A-E for SQALE and A-F for Quamoco.

To compare the resulting analysis in Table II, we used inter-
rater agreement measures Bangdiwala’s B (see Table III) and
Cohen’s κ (see Table IV). Both of these measures assume
that the provided data is from a nominal scale, yet the data

TABLE III: Results of the Bangdiwala B inter-rater agreement
analysis.

Bangdiwala
Quality Characteristic Unweighted Weighted
Maintainability 0.15 0.291
Reliability 0.141 0.141
Security 0.5 0.5

TABLE IV: Results of Cohen’s κ and Goodman-Kruskal’s γ
analyses.

Quality Cohen Goodman-Kruskal
Characteristic κ CI γ CI
Maintainability 0.0 (-0.014, 0.014) 0.032 (-0.275, 0.327)
Reliability 0.0 (-0.06, 0.036) -0.074 (-0.3411, 0.194)
Security 0.0 (0.0, 0.0) 0.038 (-0.238, 0.358)

collected is on an ordinal scale. Additionally, the Bangdiwala
B statistic provides both an unweighted and weighted measure
indicating the proportion of exact and partial agreement,
respectively. In order to utilize the added dimension of order,
which is unused by the prior two measures, we have also used
the Goodman-Kruskal γ measure of ranked correlation. Both
the value of γ and its associated 95% confidence interval for
each quality characteristic are shown in Table IV.

V. DISCUSSION

Although we only examine two commercial systems: SMS
Fueler and SMS Outcome, it is clear that with the exception
of the Security dimension, there is significant disagreement
in terms of the quality indices reported by either method.
In fact, with regard to Reliability and Maintainability, the
assessments are very different. Interestingly, whilst Quamoco
rates Reliability much higher than SQALE, the exact opposite
is observed for Maintainability. With regards to Reliability,
SQALE is significantly less forgiving because it only focuses
on the number of vulnerabilities found; whereas Quamoco
takes into consideration other factors aggregated at a higher
level of abstraction. In the Maintainability case, SQALE maps
a technical debt index to a letter grade; whereas Quamoco
aggregates many metrics into quality aspects. For the eighteen
open source projects we also see little in terms of agreements
for each of the quality assessments, and all of the agreements
tend to occur when the measured characteristic has an A rating
(as indicated by bold pairings in Table II). These observations
are further confirmed by the Bangdiwala analysis.

The results of the Cohen’s κ analysis strongly indicates there
is no agreement between the Quamoco and SQALE models
in any of the three quality characteristics, when taking the
selected projects as a whole across each dimension. This is
further enforced by the Goodman-Kruskal’s γ analysis which
shows little deviation from 0 for each quality characteristic,
and furthermore the 95% confidence interval for each charac-
teristic includes 0.0, indicating for each quality characteristic
there is no association between the Quamoco and SQALE
models.

The data, across all categories, suggests that there is little
agreement between models (for this sample of projects), as

indicated by both the kappa and gamma analyses. Yet, the
Bangdiwala B analysis shows us there is some agreement for
these 20 projects specifically when there are little to no major
issues affecting the software (in other words an A grade).
A takeaway from these two operationalizations of quality is
that SQALE ad Quamoco tend to agree when there are few
major issues, but when a large number of issues begin to affect
a project these models handle this in exceptionally different
ways. Thus, this is indicative that further attention is needed
to improve these operationalizations to align their notion of
these quality characteristics.

Although the calculation method for each of the quality
characteristics is different between both operationalizations
of the quality models, the lack of alignment in terms of a
final quality rating along quality dimensions contributes to the
confusion of practitioners. Both of these assessment quality
models are operationalizations of theoretical (i.e. definitional)
ISO standards. Quamoco implements ISO 25K, and SQALE
implements ISO 9K. Both hierarchical and the former, meant
to be an improvement over the later. Thus, software engineer-
ing practitioners and decision makers should expect similar
ratings in quality. In this case study, this is not the case, further
contributing to a confusing landscape.

VI. THREATS TO VALIDITY

In this section we examine the threats to the validity of this
study as described by Cook and Campbell [33], Campbell and
Stanley [34], Wohlin et al. [35] and Yin [21]. We are concerned
with conclusion, content, internal, construct, external and
reliability threats to validity.

A. Conclusion Validity

This validity check is concerned with establishing statis-
tically significant relationships between the independent and
dependent variables. Due to the nature of this study and the
fact that there is no dependent variable to which a relationship
would need to be established, there are no threats from
this perspective. Although our statistical analysis was limited
to Bangdiawala’s B and Cohen’s κ measures of inter-rater
agreement and Goodman-Kruskal γ association tests, their
application does not indicate inaccurate causes to affect type
I or type II errors.

B. Content Validity

Content validity refers to how complete the measures cover
the content domain. The Quamoco implementation covers the
entire product domain of software quality (as defined in the
ISO 25K standard), but we were limited by the availability of
SQALE measures in the open source version of SonarQubeTM.
Thus, we were limited to only Reliability, Security, and
Maintainability.

C. Internal Validity

This threat refers to the possibility of having unwanted or
unanticipated causal relationships. Given that this was a mul-
tiple case study of software systems, in which we exercised no

controls there is the possibility of unwanted or unanticipated
casual relationships. Specifically, there could be unwanted or
unnecessary connections between factors within the Quamoco
model. The SQALE model (as implemented in SonarQubeTM)
may also contain unanticipated or inappropriate mappings
of issues to categories used in the evaluation of Reliability,
Security, or Maintainability. Both cases pose potential threats
to the internal validity of this study. Although we did modify
the Quamoco C# model (switching it from the Gendarme7 tool
to Roslyn) by adding in new issues, measures, and factors,
the vast majority of the model remains unchanged, with the
exception of the ranks in the evaluation of Factors of the
model. The ranks were changed to reflect the ranking of issues
within the SonarQubeTM platform.

The cumulative effect of these changes on any one factor
was simply to either add new items or the changing of ranks
(from a value between 1 and 3 to a value between 1 and 5).
The rank changes were mostly superficial and only in rare
cases changed to weights associated with factors, on the other
hand the addition of new items had a more direct impact on the
weights. Overall, the inclusion of new items in the Quamoco
model does not invalidate it but rather calls for validation by
experts in each of the affected quality attributes, which would
help mitigate this threat. The SQALE model on the other
hand is provided the effects of each issue via plugins to the
SonarQubeTM framework. Unfortunately we cannot validate or
change these values which leaves no path for mitigation of this
threat.

D. Construct Validity

Construct validity refers to the meaningfulness of measure-
ments and the quality choices made about independent and
dependent variables such that these variables are representative
of the theory. The calculations for the SQALE quality indices,
as implemented in the SonarQubeTM framework, are trusted
to represent empirical observations. The threat here is the
question of what these values mean within the context of the
software under measure. Thus, there is a potential threat to
construct validity due to the implementation of the SQALE
model.

Similarly, in the Quamoco model the grade values are
determined by a threshold (as described in Section III-D), and
by a weighting arrangement derived from trusted experiences
of the original designers.

E. External Validity

External Validity refers to the ability to generalize results.
In this study, as in most case studies, the ability to generalize
results is limited due to a lack of ability to randomly sample or
to randomly assign subjects to groups. In the case of this study,
it was an observational study with the group (commercial or
open-source) being an inherent trait of each system. Thus our
results are limited, statistically, to the specific cases we studied.

7http://www.mono-project.com/docs/tools+libraries/tools/gendarme/

F. Reliabilty

Reliability refers to how dependent the process is on the
researcher [21]. The process governing the quality evalua-
tions are automated using Jenkins CI (for open source sys-
tems) or Microsoft Team Foundation Server (for CERL) and
SonarQubeTM and is not left up to the devices of any one
researcher (with the exception of the interpretation of the
results). For these reasons there are no unmitigated threats
to reliability of the experiments.

VII. CONCLUSIONS AND FUTURE WORK

We set out to explore and compare two operationalizations
of well known theoretical quality models. To do this required
the operationalization of the Quamoco quality model. Our
research hypothesis (i.e., a statement of how we think quality
assessments are implemented) describes our suspicion that
different quality model implementations would likely report
significant differences when assessing the same software com-
ponents. As expected, we find disagreements between the
ratings of software systems. Our early exploratory results
indicate this is the case in both open source and commercial
systems as suspected by TechLink, our industry partner, and
by our research laboratory. Unfortunately this is a problem
in an industry where there is little agreement in terms of
implementing these models. Although hierarchical definitional
(theoretical) models do agree on the characteristics and sub
characteristics, there is still significant work that needs to
be carried out to bridge the gap that operationalizes these
models. As discussed in section III-D, practitioners should
expect similar (not identical) ratings of quality for similar
code. Thus, the mapping of different calculation approaches
of quality to an ordinal letter rating needs calibration.

We have made the following contributions: i) an opera-
tionalization of the Quamoco quality model as a plugin to
the SonarQubeTM ii) a comparison of SQALE and Quamoco
iii) a comparison of reported quality for 18 open source
and 2 commercial projects; where quality was rated in the
security, reliability and maintainability dimensions; and iv) an
integrated visual dashboard for the Quamoco quality model.

In future work we intend to move this research in the
following directions. Initial work will be to expand the study
along the axes of language, projects, and quality models in
order to better understand the relationships between quality
models. This would include additional state of the art quality
models such as the SIG Maintainability model [36], Colum-
busQM [37], the Design Quality Model [38], a recent model
developed by Nakai et al. [39], and the Squale quality model
[40]. It would also be interesting to explore the perspectives
of practitioners and managers on the effects that these models
have on decision makers. Combining the results of these
approaches would improve the community’s understanding of
quality models and how and why specific ratings are produced.

ACKNOWLEDGEMENTS

This research is funded by the Construction Engineering
Research Laboratories (CERL), the US Army Corps of Engi-

neers, and the Department of Defense through an intermediary
partnership with TechLink.

REFERENCES

[1] S. Wagner, K. Lochmann, L. Heinemann, M. Klas, A. Trendowicz,
R. Plosch, A. Seidi, A. Goeb, and J. Streit, “The Quamoco product
quality modelling and assessment approach.” IEEE, Jun. 2012,
pp. 1133–1142. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6227106

[2] “Home | TechLink,” Feb. 2017. [Online]. Available: http://techlinkcenter.
org/

[3] J.-L. Letouzey and T. Coq, “The SQALE Analysis Model: An
Analysis Model Compliant with the Representation Condition for
Assessing the Quality of Software Source Code.” IEEE, Aug. 2010,
pp. 43–48. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5617180

[4] “SQALE | Software Quality Assessment based on Lifecycle
Expectations,” Feb. 2017. [Online]. Available: http://www.sqale.org

[5] “Construction Engineering Research Laboratory,” Feb. 2017. [Online].
Available: http://www.erdc.usace.army.mil/Locations/CERL/

[6] “SonarQube | Continous Code Quality,” Feb. 2017. [Online]. Available:
http://www.sonarqube.org

[7] “ISO/IEC 9126-1:2001 Software Engineering – Product Quality – Part
1: Quality Model,” Jun. 2001.

[8] “ISO/IEC 25010:2011 Systems and Software Engineering – Systems and
Software Quality Requirements and Evaluation (SQuaRE) – Systm and
Software Quality Models,” Mar. 2011.

[9] S. Wagner, Software Product Quality Control. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013. [Online]. Available: http://link.
springer.com/10.1007/978-3-642-38571-1

[10] R. Ferenc, P. Hegeds, and T. Gyimthy, “Software Product Quality
Models,” in Evolving Software Systems, T. Mens, A. Serebrenik, and
A. Cleve, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 65–100, dOI: 10.1007/978-3-642-45398-4 3. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-45398-4 3

[11] R. Marinescu, “Assessing technical debt by identifying design flaws in
software systems,” IBM Journal of Research and Development, vol. 56,
no. 5, pp. 9:1–9:13, Oct. 2012.

[12] J. de Groot, A. Nugroho, T. Back, and J. Visser, “What is the value
of your software?” in Managing Technical Debt (MTD), 2012 Third
International Workshop on, Jun. 2012, pp. 37–44.

[13] D. Falessi and A. Voegele, “Validating and Prioritizing Quality Rules
for Managing Techncial Debt: An Industrial Case Study,” MTD 2015-
UNDER REVISION, 2015.

[14] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman,
K. Sullivan, and N. Zazworka, “Managing technical debt in software-
reliant systems,” in Proceedings of the FSE/SDP workshop on
Future of software engineering research, ser. FoSER ’10. Santa
Fe, New Mexico, USA: ACM, 2010, pp. 47–52. [Online]. Available:
http://doi.acm.org/10.1145/1882362.1882373

[15] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical
debt and interest,” in Proceedings of the 2nd Workshop on Managing
Technical Debt, ser. MTD ’11. Waikiki, Honolulu, HI, USA: ACM,
2011, pp. 1–8. [Online]. Available: http://doi.acm.org/10.1145/1985362.
1985364

[16] N. S. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and
R. O. Spinola, “Towards an Ontology of Terms on Technical
Debt.” IEEE, Sep. 2014, pp. 1–7. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6974882

[17] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor
to Theory and Practice,” Software, IEEE, vol. 29, no. 6, pp. 18–21, Dec.
2012.

[18] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
Technical Debt in Software Engineering (Dagstuhl Seminar 16162),”
2016. [Online]. Available: https://doi.org/10.4230/DagRep.6.4.110

[19] J. Letouzey and M. Ilkiewicz, “Managing Technical Debt with the
SQALE Method,” Software, IEEE, vol. 29, no. 6, pp. 44–51, Dec. 2012.

[20] I. Griffith, D. Reimanis, C. Izurieta, Z. Codabux, A. Deo, and
B. Williams, “The Correspondence Between Software Quality Models
and Technical Debt Estimation Approaches.” IEEE, Sep. 2014,
pp. 19–26. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6974885

[21] R. K. Yin, Case study research: design and methods, 4th ed., ser. Applied
social research methods. Los Angeles, Calif: Sage Publications, 2009,
no. v. 5.

[22] M. Lorenz and J. Kidd, Object-oriented software metrics: a practical
guide, ser. Prentice Hall object-oriented series. Englewood Cliffs, NJ:
PTR Prentice Hall, 1994.

[23] L. C. Briand, J. Wst, J. W. Daly, and D. Victor Porter, “Exploring
the relationships between design measures and software quality
in object-oriented systems,” Journal of Systems and Software,
vol. 51, no. 3, pp. 245–273, May 2000. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0164121299001028

[24] S. R. Chidamber and C. F. Kemerer, “Towards a metrics suite for
object oriented design.” ACM Press, 1991, pp. 197–211. [Online].
Available: http://portal.acm.org/citation.cfm?doid=117954.117970

[25] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” Software Engineering, IEEE Transactions on, vol. 20, no. 6,
pp. 476–493, Jun. 1994.

[26] W. Li and S. Henry, “Object-oriented metrics that predict
maintainability,” Journal of Systems and Software, vol. 23,
no. 2, pp. 111–122, Nov. 1993. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/016412129390077B

[27] M. Genero, J. Olivas, M. Piattini, and F. Romero, “Using Metrics
to Predict OO Information Systems Maintainability,” in Advanced
Information Systems Engineering, G. Goos, J. Hartmanis, J. van
Leeuwen, K. R. Dittrich, A. Geppert, and M. C. Norrie, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, vol. 2068,
pp. 388–401, dOI: 10.1007/3-540-45341-5 26. [Online]. Available:
http://link.springer.com/10.1007/3-540-45341-5 26

[28] S. Bangdiwala, “A graphical test for observer agreement,” in 45th
International Statistical Institute Meeting, 1985, pp. 307–308.

[29] J. Cohen, “A Coefficient of Agreement for Nominal Scales,”
Educational and Psychological Measurement, vol. 20, no. 1, pp.
37–46, Apr. 1960. [Online]. Available: http://journals.sagepub.com/doi/
10.1177/001316446002000104

[30] L. A. Goodman and W. H. Kruskal, “Measures of Association
for Cross Classifications,” Journal of the American Statistical
Association, vol. 49, no. 268, p. 732, Dec. 1954. [Online]. Available:
http://www.jstor.org/stable/2281536?origin=crossref

[31] M. G. Kendall, “A New Measure of Rank Correlation,” Biometrika,
vol. 30, no. 1/2, p. 81, Jun. 1938. [Online]. Available: http:
//www.jstor.org/stable/2332226?origin=crossref

[32] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945. [Online]. Available:
http://www.jstor.org/stable/3001968

[33] T. D. Cook and D. T. Campbell, Quasi-experimentation: design and
analysis issues for field settings. Boston: Houghton Mifflin, 1979.

[34] D. Campbell and J. Stanley, Experimental and Quasi-experimental
Designs for Research. Rand-McNally, 1963.

[35] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell,
and A. Wessln, Experimentation in Software Engineering. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-29044-2

[36] I. Heitlager, T. Kuipers, and J. Visser, “A Practical Model for Measuring
Maintainability.” IEEE, Sep. 2007, pp. 30–39. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4335232

[37] T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc, and T. Gyimothy,
“A probabilistic software quality model.” IEEE, Sep. 2011, pp.
243–252. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6080791

[38] R. Plsch, J. Bruer, C. Krner, and M. Saft, “Measuring,
Assessing and Improving Software Quality based on Object-Oriented
Design Principles,” Open Computer Science, vol. 6, no. 1, Jan.
2016. [Online]. Available: http://www.degruyter.com/view/j/comp.2016.
6.issue-1/comp-2016-0016/comp-2016-0016.xml

[39] H. Nakai, N. Tsuda, K. Honda, H. Washizaki, and Y. Fukazawa,
“A SQuaRE-based software quality evaluation framework and its
case study.” IEEE, Nov. 2016, pp. 3704–3707. [Online]. Available:
http://ieeexplore.ieee.org/document/7848750/

[40] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz,
J. Laval, F. Bellingard, and P. Vaillergues, “The squale model –
A practice-based industrial quality model.” IEEE, Sep. 2009, pp.
531–534. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5306381

