
The Correspondence between Software Quality
Models and Technical Debt Estimation Approaches

Isaac Griffith, Derek Reimanis, Clemente Izurieta
Software Engineering Laboratory
Department of Computer Science

Montana State University
Bozeman, MT, 59717, USA

{isaac.griffith, derek.reimanis}@msu.montana.edu
clemente.izurieta@montana.edu

Zadia Codabux, Ajay Deo, Byron Williams
Department of Computer Science and Engineering

Mississippi State University
Starkville, MS, 39762, USA

{zc130, akd175}@msstate.edu
williams@cse.msstate.edu

Abstract—Technical debt has recently become a major concern
in the software industry. While it has been shown that technical
debt has an adverse effect on the quality of a software system,
there has been little work to explore this relationship. Further,
with the growing number of approaches to estimate the technical
debt principal of a software system, there is a dearth of work to
empirically validate the relationship between technical debt scores
produced by practical tools against established theoretical quality
models. We conducted a case study across 10 releases of 10 open
source systems in order to evaluate three proposed methods of
technical debt principal estimation. The evaluation compares each
technique against an external quality model. We found that only
one estimation technique had a strong correlation to the quality
attributes reusability and understandability. In a multiple linear
regression analysis we also found that a different estimation
technique had a significant relationship to the quality attributes
effectiveness and functionality. These results indicate that it is
important that industry practitioners, ensure that the technical
debt estimate they employ accurately depicts the effects of
technical debt as viewed from their quality model.

Keywords—technical debt, quality, empirical, model.

I. INTRODUCTION
The notion of technical debt [1] has become a fast growing

phenomena in the area of Software Engineering. It encompasses
a relationship between the decisions made and their effect on the
quality of the system. Recently, several methods have been
proposed to estimate a software system’s level of technical debt
[2] [3] [4] [5] [6] [7] [8] [9]. Unfortunately there has yet to be a
study which evaluates whether these estimation techniques
effectively describe the relationship between the quality of the
system and the level of technical debt.

The need to measure the quality of a software product has
existed nearly as long as software engineering itself [10]. This
has produced several quality models and tools which have
gained traction in industry. With the growing concern for
technical debt and its lasting effects, it is apparent that there
exists a need to connect the tools that have grown out of the
technical debt management arena to existing quality models.

The interesting and overarching question then becomes:
What does the estimate of technical debt provided by approach

1 http://www.sonarqube.org/

X mean in the context of quality model Y? In other words how
can we evaluate the accuracy of technical debt estimation
approaches in the context of an external quality model?
Answering these questions will provide empirical evidence as to
which approach is best suited for a software development
organization.

The purpose of this study is to evaluate several technical debt
estimation approaches in the context of an external quality
model, and to determine if the relationships which are present in
current models of technical debt agree with the quality models.
Specifically, we evaluated the method embedded in the
SonarQubeTM1 TD-Plugin [4], CAST’s method of technical debt
estimation identified by Curtis, Sappidi, and Szynkarski [2][3],
and Marinescu’s method of technical debt estimation using
design disharmonies [7] all methods were evaluated against the
QMOOD quality model [11].

Using the Goal Question Metric paradigm [12] we have
identified the following research goals (RG), their associated
questions (RQ) and their associated metrics (M):

RG1. Evaluate how the SonarQube TD-Plugin method, the
CAST method, and Marinescu’s method for technical
debt estimation approaches are related to quality.

RQ1.1. What is the strength of the relationship
between the technical debt estimates and quality
attributes?

RQ1.2. How does the strength of each relationship
compare?

RG2. For each method of estimation identify how the
technical debt and quality relationship is portrayed.

RQ2.1. What is the estimated effect of a change in the
technical debt estimate on each of the quality
attributes?

M1. Correlation: a measure of the strength of the linear
relationship between two variables [13].

M2. Technical Debt Estimate (TDE): an estimate associated
with the value of the debt (in monetary terms) or with
the cost associated in removing the debt (via

refactoring) in either monetary amounts or amount of
effort (i.e., man-hours).

M3. Quality Estimate: This is an estimate of one of the
following quality aspects (as defined in the QMOOD
quality model): reusability, flexibility,
understandability, functionality, extendibility, and
effectiveness.

In this paper we address a gap in current research addressing
the appropriateness of several technical debt estimates in
representing the relationship between external quality models
and technical debt. Each selected method of technical debt
estimation uses a different underlying quality model for which
direct comparison was not available. Thus, we selected a
separate quality model to which we can compare each measure
against. We look at the relationship between technical debt
estimation measures and the quality model, QMOOD (Quality
Model for Object Oriented Designs) [14]. QMOOD uses a
metrics suite; which is hierarchical in nature, and is based on
the idea of using only metrics to indicate the quality level of
software, such that the quality of the software can be evaluated
early in the development lifecycle.

This paper is organized as follows: Section 2 identifies
relevant background information and related work. Section 3
elaborates on the underlying research methods. Section 4
presents the results and associated analysis. Section 5 presents
threats to validity and their mitigation. Finally, section 6
concludes with a summary of the findings and an outlook
towards future work.

II. BACKGROUND AND RELATED WORK

A. Technical Debt Principal Estimation
Although there are many proposed methods of technical

debt estimation [2][3][4][5][6][7][8][9], in this study we are
concerned with only three.

The first method is implemented in the SonarQubeTM TD-
Plugin [4]. In order to evaluate each system we used
SonarQubeTM sonar runner to analyze the source code of each
system. After the analysis we used the TD-Plugin (with default
settings) to extract the technical debt estimate for each release.
This method uses the following formula to calculate the
technical debt value [4]:

Debt = duplication + violations + comments + coverage

+ complexity + design (1)

 duplication = cost_to_fix_one_block * duplicated_blocks (2)

 violations = cost_to_fix_one_violation
 * mandatory_violations (3)

comments = cost_to_comment_one_API

* public_undocumented_API (4)

coverage = cost_to_cover_one_of_complexity

* uncovered_complexity_by_tests (5)

design = cost_to_cut_an_edge_between_two_files

* package_edges_weight (6)

complexity = cost_to_split_a_method
* ሺfunction_complexity_distribution ≥ 8ሻ

+ cost_to_split_a_class
* (class_complexity_distribution ≥ 60)

(7)

Where duplication, violations, comments, coverage,
complexity and cycles secondary formulas is each measured in
man-days. Each of the costs used in the secondary formulas can
be set as parameters. We used the default values as described
by Table 1. Duplication refers to the estimated effort associated
with the removal of duplicated code in the system. Violations is
the estimated effort associated with the removal of violations in
the system. Coverages represents the estimated effort required
to bring test coverage up to 80%. Complexity is the total
estimated effort required to split every method and every class
(of those requiring such a split). Comments refers to the
estimated effort associated with documenting the
undocumented portions of the API. Design refers to the
estimated effort associated with cutting all existing edges
between files. Each of the cost (estimated effort) (Table 1) are
defined in man-hours, in order to convert this to man-days for
the debt calculation, the default value of 8 hours per day is used.
A final calculation is then performed to evaluate the cost per
man-day of technical debt using a default value of $500.

The second method proposed by Curtis, Sappidi, and
Szynkarski [2][3] estimates technical debt principal using a cost
model based on detected violations. This method uses estimates
of time to fix and cost to fix in order to connect these identified
violations to a monetary value. The following equation is
proposed as a means to measure the technical debt principal:

TDE = (ΣHS * %HS * HSFതതതതത * HScost)

 + (ΣMS * %MS * MSFതതതതതത * MScost)

 + (ΣLS * %LS * LSFതതതതത * LScost)
(8)

Where ΣHS, ΣMS, and ΣLS are the count of high severity,
medium severity, and low severity violations respectively. The
values for %HS, %MS, and %LS represent the percentages of
high, medium, and low severity violations intended to be fixed.
The values of HSFതതതതത, MSFതതതതതത, and LSFതതതതത represent the average time (in
hours) required to fix per instance of each severity level.
Finally, the values of HScost , MScost , and LScost represent the
cost in monetary value per hour to perform the work. Curtis,
Sappidi, and Szynkarski, provide three estimates for technical
debt (see Table 2).

TABLE 1. DEFAULT COST VALUES USED IN THE CALCULATION OF
TECHNICAL DEBT IN THE SONARQUBE TD-PLUGIN [4].

Cost
Default Value

(in man-hours)
cost_to_fix_one_block 2
cost_to_fix_one_violation 0.1
cost_to_comment_one_API 0.2
cost_to_cover_one_of_complexity 0.2
cost_to_split_a_method 0.5
cost_to_split_a_class 8
cost_to_cut_an_edge_between_two_files 4

The final method for estimating technical debt was
developed by Marinescu [7]. This method utilizes design
disharmonies in the software to derive an index of the
underlying issues in quality. Marinescu proposes that we
measure the impact of these design disharmonies based on how
they influence the underlying design, the level of granularity at
which they manifest themselves (class or method) and the
underlying severity of the disharmony based on the amount of
code it impacts. . Here the influence, Idisharmony, is one of the
following values: high=2.0, medium = 1.0, and low = 0.5. The
granularity, Gdisharmony , is either of the following values:
method=1.0 or class=3.0. Finally the severity, Sinstance, is based
on how much a disharmony violates a given metrics threshold.
The impact score of a given instance of a disharmony is
calculated using the following formula [7]:

ISinstance = Idisharmony* Gdisharmony* Sinstance (9)
Once the impact score is computed the overall debt sym ptoms
index (DSI) can be evaluated using the following equation [7]:

DSI = ∑ ISinstanceall instances

KLOC
 (10)

Where KLOC is the number of thousands of lines of code
for the software system under consideration. Marinescu
indicates that this index value acts as a surrogate measure for
the technical debt level of a software system.

B. Technical Debt and Quality
The relationship between technical debt and quality is not

well understood. There has only been a small number of studies
that have looked into this relationship. One of the first studies
was conducted by Zazworka, Seaman, and Shull [14], where
they confirmed that design debt, specifically God Classes,
negatively impact quality. Zazworka, Shaw, Shull, and Seaman
[15] further looked into the impact of maintainability on design
debt, and confirmed that technical debt adversely affects the
maintainability of software. Curtis, Sappidi, and Szynkarski
[2][3], on the other hand, evaluated the impact of technical debt

2 http://www.oracle.com/technetwork/java/index.html

on the following quality aspects: robustness, performance,
security, changeability, and transferability.

Each of these studies provides empirical evidence of the
adverse effects of technical debt on software quality, but an
empirical model relating the change in quality to the change in
technical debt has yet to be developed. Further, with the
exception of the study by Curtis, Sappidi, and Szynkarski [3],
there are no studies evaluating the estimation techniques and
their appropriateness in representing the relationship between
external quality models and technical debt.

III. METHODS

A. Experimental Design
The experiment was conducted as a multiple case study

across 10 open source software systems selected from the
Qualitas Corpus [16]. Each system was selected using the
following criteria:

1. Each system must have a minimum of 10 releases
available for analysis.

2. Each release of a selected system must have a size of at
least 25 KLOC but not more than 250 KLOC (due to
license limitations of measurement tools).

3. Each system must be open source and implemented in
the JavaTM2 programming language.

Using this criteria we selected the open source software systems
listed in Table 3.

In Section I we identified two research questions of interest
for this study. These questions are addressed by the following
hypotheses:

:ଵ,ଵܪ • There is a relationship between each technical
debt estimate and each quality attribute

:ଶ,ଵܪ • There is a relationship between each technical
debt estimate and each quality attribute when
accounting for differences between systems.

TABLE 2. VALUES FOR ESTIMATES OF TDE AS PROPOSED BY CURTIS, SIPPIDI, AND SZYNKARSKI [3].

 Violation Severity Level Estimate 1 Estimate 2 Estimate 3

Percent of Violations
to be Fixed

High Severity 50% 100% 100%
Medium Severity 25% 50% –

Low Severity 10% – –

Hours to Fix

High Severity 1hr 2.5 hrs 10% - 1 hr
20% - 2 hrs
40% - 4 hrs
15% - 6 hrs
10% - 8 hrs
5% - 16 hrs

Medium Severity 1 hr 1 hr –
Low Severity 1 hr – –

Cost per Hour All Severity Levels $75 $75 $75

The first hypothesis was evaluated by measuring Kendall’s
Tau [17] correlation coefficient between each quality at tribute
and each technical debt estimate. We selected Kendall’s Tau
statistic because it acts as a measure of the monotonicity of the
relationship between two variables and is robust against non-
linearity [13]. In other words, Kendall’s Tau statistic provides
a measure of the consistency of the trend between two
variables.

To evaluate the second hypothesis we used a multiple linear
regression analysis. This analysis method was selected in order
to account for lurking variables (hidden variables which
simultaneously affect two variables within a relationship and
thus affects the relationship itself [13]) missed by the
correlation analysis. To determine the extent of the relationship
between each estimation technique and each quality attribute
we used a multiple linear regression model. This model has one
independent variable, the technical debt estimate with five
levels (TDE1, TDE2a, TDE2b, TDE2c, and TDE3), and the
dependent variable; which is one of the quality attributes
(reusability, flexibility, undertandability, functionality,
extendibility, and effectiveness). The model considered two
blocking variables: lines of code as defined by Li and Henry
[18] and the specific release of a system.

The experimental process is depicted in Fig. 1. Having
selected the systems for study we begin by measuring each
release of each system using the technical debt identification
tools (see Fig. 1) while simultaneously extracting the necessary
metrics using the tool Understand3. Understand was selected in
due to the sheer number of metrics it calculates and for the
ability to utilize its API to further extend its capabilities. This
information is used to calculate (or extract) the technical debt
estimates (see Section III.B) and the quality attribute estimates
(see Section III.C). Once we have the estimated values we
proceed to the analysis phase (see Section IV).

B. Technical Debt Estimation
As identified in Section II.A we selected three approaches

for TDE measurement. Each of the following methods was

3 http://www.scitools.com
4 http://pmd.sourceforge.net/

selected due to their operationalization in existing tools. The
first method, uses the SonarQubeTM TD-Plugin [4], is fully
automated and will be denoted as, TDE1. The second method
is based on the work of Curtis, Sappidi, and Szynkarski [2][3],
is semi-automatically calculated and will be as TDE2a, TDE2b,
and TDE2c. The TDE2 estimates are measured by first
collecting design flaws using the following tools: PMD 4 and
FindBugs5 (both via SonarQubeTM sonar runner tools) across
each system and its releases. These tools identify several levels
of severity for rule violations they detect, which are then
aggregated by SonarQubeTM. For this study we use the
following conversion: High Severity = CRITICAL, Medium
Severity = MAJOR, and Low Severity = MINOR. TDE2 is

5 http://findbugs.sourceforge.net/

Fig. 1. Data collection process.

Tool: Understand

Tool:
SonarQube

Tool: FindBugs
Tool: PMD Tool: Infusion

TD Estimate 1 TD Estimates
2a, 2b, and 2c TD Estimate 3

Apache Collections

FindBugs

JFreeChart
JHotDraw

JRuby

Apache Ant
JEdit

Apache Cayenne
PMD

Proguard

Quality Attribute Estimates

Open Source Systems

Correlation and
Multiple Linear

Regression Analysis

TABLE 3. SELECTED OPEN SOURCE SOFTWARE SYSTEMS AND THEIR VERSIONS UNDER STUDY.

 System Versions
System 1 2 3 4 5 6 7 8 9 10

Apache Commons
Collections 1.0 2.0 2.1 2.1.1 3.0 3.1 3.2 3.2.1 4.0alpha1 4.0

FindBugs 1.2.1 1.3.4 1.3.5 1.3.6 1.3.7 1.3.8 1.3.9 2.0.0 2.0.3 3.0.0
JFreeChart 0.6.0 0.7.0 0.8.0 0.9.0 1.0.0 1.0.4 1.0.8 1.0.12 1.0.16 1.0.17
JHotDraw 5.2 5.3 5.4b2 6.0b1 7.0.6 7.1 7.2 7.4.1 7.5.1 7.6

JRuby 0.9.0 1.0 1.1 1.2.0 1.3.0 1.4.0 1.5.0 1.6.0 1.7.0 1.7.11
Apache Ant 1.5.2 1.5.4 1.6.0 1.6.2 1.6.4 1.7.0 1.8.0 1.8.3 1.9.0 1.9.3

JEdit 2.4final 3.0 3.0.1 3.2.2 4.0 4.1 4.2 4.3 4.5.0 5.1.0
Apache Cayenne 1.0.6 1.1 1.2 2.0.2 2.0.3 2.0.4 3.0 3.0.1 3.0.2 3.1M3

PMD 3.9 4.0 4.1 4.2 4.2.6 4.3 5.0.0 5.0.5 5.1.0 5.2.0
ProGuard 1.0 1.3 1.7.2 2.0.1 3.0.7 3.3 3.7 4.0 4.5 4.11

broken down into three separate estimates: ܶ2ܧܦ஺ 2஻ܧܦܶ , ,
and ܶ2ܧܦ஼. Using the values provided in Table 1 in (8) we can
calculate the estimates for each release of each system. The
final method based on Marinescu’s approach [7], is denoted as
TDE3. TDE3 is automatically calculated as the Quality Deficit
Index using the tool inFusion6.

C. Quality Measurement
We use a third party quality model, QMOOD [11] to

evaluate the accuracy of technical debt principal estimation
techniques. QMOOD was selected due to its lack of relation to
the underlying quality models used in each of the TDE
measures, and it acts a representation of previous methods for
quality assessment (the use of only metrics and the fact that it
is based on the ISO 9126 specification [19]). Using an external
quality model allows us to simulate the circumstances of a
software development organization. The QMOOD quality
model is based on the ISO 9126 specification [19] and uses of
a combination of design metrics to indicate changes in system
quality.

Each of the QMOOD quality aspects is measured using a
combination of metrics as identified in [11] (see Table 4). The
model is composed of the following six quality attributes:

6 http://www.intooitus.com/products/infusion

reusability, understandability, flexibility, effectiveness,
functionality, and extendibility. The calculation of each of the
quality attributes from the metrics listed in Table 4 is provided
in Table 5. In order to measure these metrics we used the tool
Understand. The QMOOD quality aspects and their
relationships are provided in Table 5 (for convenience).

The measurement process of a given release of a system is
as follows. First, we measure the metrics of concern (Table 4)
for each release of each software system. We then calculate the
values of the quality aspects using the metrics from the first step
(see Table 5), for each release of each system respectively.

IV. RESULTS AND ANALYSIS
This section presents the results and discusses their analysis.

The first set of results pertains to the evaluation of the
relationship between the technical debt estimates and the
quality attributes of the QMOOD quality model. The second set
of results describes the multiple linear regression analysis.

We calculated Kendall’s Tau correlation coefficient
between each TDE and each quality attribute value as shown in
Table 6 and Fig. 2. We tested for correlation between each
paired sample. The test was conducted at the 95% confidence
level. Those correlations with weak evidence (p-values < 0.1
indicate that there is a less than 10% chance that the observed
value occurred by chance) are shown in bold in Table 6. The
associated scatterplots for the correlations are displayed in Fig.
2. Fig. 2 can be read by finding the pair of variables along the
diagonal finding either the scatterplot (below the diagonal) or

TABLE 5. QMOOD QUALITY ATTRIBUTE EQUATIONS [7].

Quality
Attribute Calculation

Reusability -0.25 * Coupling + 0.25 * Cohesion + 0.5
* Messaging + 0.5 * Design Size

Flexibility 0.25 * Encapsulation – 0.25 * Coupling +
0.5 * Composition + 0.5 * Polymorphism

Understand-
ability

-0.33 * Abstraction + 0.33 * Encapsulation
– 0.33 * Coupling + 0.33 * Cohesion –
0.33 * Polymorphism – 0.33 * Complexity
– 0.33 * Design Size

Functionality
0.12 * Cohesion + 0.22 * Polymorphism +
0.22 * Messaging + 0.22 * Design Size +
0.22 * Hierarchies

Extendibility 0.5 * Abstraction – 0.5 * Coupling + 0.5 *
Inheritance + 0.5 * Polymorphism

Effectiveness
0.2 * Abstraction + 0.2 * Encapsulation +
0.2 * Composition + 0.2 * Inheritance +
0.2 * Polymorphism

TABLE 4. QMOOD METRIC MEASUREMENTS USING UNDERSTAND.

Metric Measurement
Design Size

(DSC)
Total number of classes defined in a
system.

Hierarchies
(NOH)

The count of the number of classes in
a system where
MaxInheritanceTree(class) = 0.

Abstraction
(ANA)

The maximum length of a given class
inheritance tree.

Encapsulation
(DAM)

Ratio of the number of private and
protected variables declared in a
class to the number of total variables
declared in the class.

Coupling (DCC) A count of the number of couplings a
class has.

Cohesion (CAM) 100 – PercentLackOfCohesion
100

Composition
(MOA)

A count of the number of attributes
which whose type is an object
defined within the scope of the
system.

Inheritance
(MFA)

A count of the methods inherited by
the class divided by the total number
of methods available to the classs.

Polymorphism
(NOP)

All methods excluding final, static,
and private methods.

Messaging (CIS) A count of the number of public
methods declared in a class.

Complexity
(NOM)

A count of all methods declared in a
class.

correlation value (above the diagonal) where the rows and
columns of the variables intersect.

As can be seen in Table 6, in all cases TDE3 shows weak
correlation (< 0.45) (or no significant correlation) to each of the
quality attributes. For reusability, understandability, and
functionality there is moderate to strong correlation to TDE1,

TDE2a, TDE2b, and TDE2c as shown in Table 6. Although
these results are somewhat promising, they do not take into
account the differences in size between the different systems
nor the changes in size between releases of a system. To

TABLE 6. CORRELATION BETWEEN TD ESTIMATES AND QUALITY
ATTRIBUTES.

Quality
Technical Debt Estimates

TDE1 TDE2a TDE2b TDE2c TDE3
Reusa-
bility 0.7146 0.6483 0.6636 0.5059 0.2206

Flexib-
ility 0.2538 0.1908 0.1481 0.0955 0.012

Under-
stand
ability

-0.715 -0.658 -0.673 -0.506 -0.219

Effect-
iveness 0.2522 0.1964 0.1554 0.0988 0.0156

Function
-ality 0.6846 0.6175 0.6363 0.4748 0.1948

Extend-
ibility 0.2805 0.211 0.1805 0.1105 -0.03

TABLE 7. INDICATION OF A RELATIONSHIP BETWEEN EACH OF THE
TECHNICAL DEBT ESTIMATES AND EACH OF THE QMOOD QUALITY

ATTRIBUTES. AN X INDICATES NO RELATIONSHIP AND A CHECK INDICATES A
RELATIONSHIP.

Quality
Technical Debt Estimate

TDE1 TDE2a TDE2b TDE2c TDE3
Reusa-
bility

Flexib-
ility

Under-
stand
ability

Effect-
iveness

Function-
ality

Extend-
ibility

Fig. 2. Scatterplot and correlation matrix for TDE1, TDE2a, TDE2b, TDE2c, TDE3, Reusability, Understandability, Functionality, Effectiveness, Extendibility,
and Flexibility.

TDE1

0e+00 6e+05

0.80 0.74

0 100000

0.62 0.27

0 2000

0.71 -0.72

0 1000

0.68 0.25

5 15

0.28

0e
+0

00.25

0e
+0

0

TDE2a

0.87 0.55 0.22 0.65 -0.66 0.62 0.20 0.21 0.19
TDE2b

0.58 0.17 0.66 -0.67 0.64 0.16 0.18

0e
+0

0
6e

+0
5

0.15

0
15

00
00

TDE2c

0.25 0.51 -0.51 0.47 0.10 0.11 0.10
TDE3

0.22 -0.22 0.19 0.02 -0.03

0
200.01

0
30

00 Reusability

-0.99 0.96 0.27 0.33 0.26
Understandability

-0.95 -0.27 -0.33

-2
50

0
0

-0.26

0
15

00 Functionality

0.24 0.32 0.24
Effectiveness

0.81

4
80.91

5
15

Extendibility

0.86

0e+00 8e+05 0e+00 4e+05 0 20 40 -2500 -500 4 8 12 5 10 20

5
15

Flexibility

alleviate this threat, we also developed a multiple linear
regression model which compensates for these issues.

The significance of the results from the multiple linear
regression analysis are displayed in Table 7. For each of the
technical debt estimation approaches we found that there was
little to no evidence suggesting that the selected technical debt
estimates have a relationship to reusability, understandability,
functionality, and extendibility (as defined by the QMOOD
quality model), while controlling for LOC and the number of
releases in systems. With the exclusion of TDE2c, each of the
remaining technical debt estimation techniques show little to no
evidence of a relationship to flexibility or effectiveness.

There is strong evidence that for a one unit change in
TDE2c there is a -1.701e-05 change in flexibility (t87=19.686
with p=0.000328 and 95% CI between -2.60494e-05 and -
7.973741e-06), when controlling for LOC and number of
releases in systems. There is also strong evidence that for a one
unit change in TDE2c there is a 1.508546e-13 change in
effectiveness (t87=43.928 with p=0.001473 and 95% CI
between 2.352052e-14 and 3.886466e-13), when controlling
for LOC and number of releases in systems.

In summary, as seen in Table 7, it appears that for all
technical debt estimates excluding TDE2c they appear to have
no relation to the QMOOD quality model, regardless of the
correlation analysis shown in Table 6 and Fig. 2. We have
demonstrated here, there is no evidence to suggest that these
estimates of technical debt reflect the expected relationship to
quality.

Software development organizations intent on utilizing
technical debt estimation tools together with third party tools
that measure a software product’s quality, should ensure that
the technical debt estimates are truly indicative of issues in
quality of their product using their measurement system.

V. THREATS TO VALIDITY
This section discusses potential threats to the validity of the

study described within this paper. Specifically, we focus on
threats to conclusion, internal, construct, content, and external
validity [20][21].

A. Conclusion Validity
Conclusion validity is concerned with establishing

statistical significance between the independent variables and
the dependent variable outputs. A potential threat stems from
the use of correlation analysis. Correlations do not provide a
means to validate the statistical significance of the strength of
relationships and is subject to issues with lurking variables.
This threat is mitigated by the use of a regression model to
further explore the relationships between the estimation
approaches and quality attributes.

B. Internal Validity
This threat refers to the possibility of having unwanted or

unanticipated relationships. If we had limited our analysis to
only correlations between the technical debt estimates and
quality attributes, then there would have been a threat to

internal validity, but this threat has been mitigated in the
multiple linear regression analysis through the use of a
hierarchical model with a blocking variable on the size of the
project.

C. Construct Validity
Construct validity refers to the meaningfulness of

measurements and that the independent and dependent
variables are represented correctly in the study. In our case
study, the choice of the QMOOD model rather than any other
quality model poses a threat. In addition, the metrics and
thresholds for the quality attributes of the QMOOD model have
not been evaluated to determine their appropriateness in all
contexts. Another threat to the construct validity of this study is
in the use of the tool Understand as a means to measure the
QMOOD metrics. The QMOOD quality model was originally
designed for the C++ language. In this study we looked at Java
based projects and were forced to use a generic metrics tool to
extract the necessary information. The threat stems from the
potentially inaccurate interpretation of the metrics based on the
descriptions provided by Bansiya and Davis [11] which is
indicated as an existing issue by O’Keeffe and Cinneide [22].
A means to mitigate both of these threats would be to select
more modern quality models for analysis. We leave this to
future work.

D. Content Validity
Content validity refers to how complete the measures cover

the content domain. QMOOD was based on the ISO 9126
specification [19], but it was created with the design phase in
mind and so it does not take into consideration quality attributes
related to implementation. Thus, we are not considering all
attributes of quality which are relevant to the problem. Recent
work by Ferenc, Hegedűs, and Gyimóthy [10] describes current
software quality models and methods for comparison between
these models. These more recent models incorporate not only
software quality metrics but also software quality rules making
such quality models more appropriate to the analyses performed
across already implemented software systems. There is also a
threat stemming from the selection of techniques for technical
debt estimation. Although we have selected several techniques
each one only estimates the technical debt principal, without
providing measures for technical debt interest and interest
probability [23]. This threat can mitigated by including
estimation techniques that are more complete representations of
technical debt, such as those from Nugroho, Vissier, and
Kuipers [8] or Chin, Huddleston, Bodwell, and Gat [9].

E. External Validity
External Validity refers to the ability to generalize results.

Due to the context of this case study, the ability to generalize
from our results is limited. To make our results as generalizable
as possible, we considered ten different Java open source
systems from the Qualitas Corpus [16] and studied ten releases
each. However, we cannot be sure our findings will be valid for
other domains and applications.

VI. CONCLUSIONS AND FUTURE WORK
We have conducted a case study to investigate the level of

agreement from 5 methods of estimating technical debt
principal to an external quality model. We studied 10 releases
of 10 open source JavaTM software systems. In order to evaluate
whether the selected estimation approaches can be related to the
attributes of the QMOOD quality model we conducted both a
correlation analysis and a regression analysis.

Our initial correlation analysis found that there was some
evidence for strong correlation between three of the estimates
and reusability and understandability, which is expected given
existing research. Unfortunately, correlation does not take other
factors into consideration and to accommodate this we also
performed a multiple linear regression analysis. The results of
this latter analysis showed that with the exception of one
estimation method (for flexibility and effectiveness) there was
no observable relationship between the quality attributes and
the technical debt estimates. Even more surprising was that
given prior research showing that technical debt impacts both
reusability and understandability of a software system, we
found that for these quality attributes none of the technical debt
principal estimates showed any relationship when taking size
into consideration.

The method presented here of comparing technical debt
estimates to the attributes of an external quality model can be
used by practitioners and managers. It will provide them with
an empirical assessment of selected technical debt measures
against any quality model used to evaluate their software
products. This will help assure that the technical debt values
they are seeing are reflected as issues measured by their
software quality model.

There are several paths for future work. In the short term
exploring more recent quality models such as the SQUALE
quality model [24], the QUAMOCO quality framework [25] or
the Columbus quality model [26] against these estimates would
be beneficial. Another immediate item is the evaluation of other
methods of technical debt estimation, such as those put forth by
Letouzey [6] and Letouzey and Ilkiewicz [5], Nugroho, Visser
and Kuipers [8] and by Chin, Huddleston, Bodwell and Gat [9].
Along with exploring other existing methods of estimation, we
need to develop a means to compare these methods and their
merit in order to provide guidance to practitioners, similar to
the work of Ferenc, Hegedűs, and Gyimóthy [10] on software
product quality models. Lastly, this work explored these issues
only within the context of open source JavaTM software systems
of moderate size. In order to validate these results we need to
explore larger software systems (i.e., commercial software) as
well as looking into software written in other languages.

References
[1] W. Cunningham, "The WyCash portfolio management system,"

SIGPLAN OOPS Mess., vol. 4, no. 2, pp. 29-30, Dec 1992.
[2] B. Curtis, J. Sappidi and A. Szynkarski, "Estimating the Principal of an

Application's Technical Debt," Software, IEEE, vol. 29, no. 6, pp. 34-42,
Dec 2012.

[3] B. Curtis, J. Sappidi and A. Szynkarski, "Estimating the size, cost, and
types of Technical Debt," in Managing Technical Debt (MTD), 2012
Third International Workshop on, 2012.

[4] O. Gaudin, "Evaluate your technical debt with Sonar," Sonar, Jun, 2009.
[5] J. Letouzey and M. Ilkiewicz, "Managing Technical Debt with the

SQALE Method," Software, IEEE, vol. 29, no. 6, pp. 44-51, Dec 2012.
[6] J. Letouzey, "The SQALE method for evaluating Technical Debt," in

Managing Technical Debt (MTD), 2012 Third International Workshop
on, 2012.

[7] R. Marinescu, "Assessing technical debt by identifying design flaws in
software systems," IBM Journal of Research and Development, vol. 56,
no. 5, pp. 9:1--9:13, OCT 2012.

[8] A. Nugroho, J. Visser and T. Kuipers, "An empirical model of technical
debt and interest," in Proceedings of the 2nd Workshop on Managing
Technical Debt, Waikiki, Honolulu, HI, USA, 2011.

[9] S. Chin, E. Huddleston, W. Bodwell and I. Gat, "The Economics of
Technical Debt," Cutter IT Journal, vol. 23, no. 10, pp. 11-15, 2010.

[10] R. Ferenc, P. Hegedűs and T. Gyimóthy, "Software Product Quality
Models," in Evolving Software Systems, T. Mens, A. Serebrenik and A.
Cleve, Eds., Berlin, Heidelberg, Springer Berlin Heidelberg, 2014.

[11] J. Bansiya and C. Davis, "A hierarchical model for object-oriented
design quality assessment," IEEE Transactions on Software
Engineering, vol. 28, no. 1, pp. 4-17, Jan 2002.

[12] V. R. Basili, "Software Modeling and Measurement: The
Goal/Question/Metric Paradigm," College Park, MD, USA, 1992.

[13] R. D. De Veaux, Stats: data and models, 3rd ed ed., Boston: Pearson
Education, 2012.

[14] N. Zazworka, C. Seaman and F. Shull, "Prioritizing design debt
investment opportunities," in Proceedings of the 2nd Workshop on
Managing Technical Debt, Waikiki, Honolulu, HI, USA, 2011.

[15] N. Zazworka, M. A. Shaw, F. Shull and C. Seaman, "Investigating the
impact of design debt on software quality," in Proceedings of the 2nd
Workshop on Managing Technical Debt, Waikiki, Honolulu, HI, USA,
2011.

[16] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton
and J. Noble, "The Qualitas Corpus: A Curated Collection of Java Code
for Empirical Studies," in Software Engineering Conference (APSEC),
2010 17th Asia Pacific, 2010.

[17] M. G. Kendall, "A New Measure of Rank Correlation," Biometrika, vol.
30, no. 1/2, p. 81, Jun 1938.

[18] W. Li and S. Henry, "Object-oriented metrics that predict
maintainability," Journal of Systems and Software, vol. 23, no. 2, pp.
111-122, Nov 1993.

[19] Software Product Evaluation--Quality Characteristics and Guidlines for
Their Use, ISO/IEC Standard ISO-9126, 1991.

[20] T. D. Cook and D. T. Campbell, Quasi-experimentation: design &
analysis issues for field settings, Boston: Houghton Mifflin, 1979.

[21] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell and A.
Wesslén, Experimentation in Software Engineering, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012.

[22] M. O'Keeffe and M. Cinneide, "Search-based software maintenance,"
2006.

[23] S. McConnell, "Managing Technical Debt," 2008.
[24] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval,

F. Bellingard and P. Vaillergues, "The squale model -- A practice-based
industrial quality model," 2009.

[25] S. Wagner, K. Lochmann, L. Heinemann, M. Klas, A. Trendowicz, R.
Plosch, A. Seidi, A. Goeb and J. Streit, "The Quamoco product quality
modelling and assessment approach," 2012.

[26] T. Bakota, P. Hegedűs, P. Kortvelyesi, R. Ferenc and T. Gyimóthy, "A
probabilistic software quality model," 2011.

